

What is a Genor	ne?
	where
chromosomes	essential
extrachromosomal elements	special purposes
amplified parts of	
the nuclear genome	
autonomous elements	e.g. RNA palindrome
plasmids	mainly in bacteria,
	but also in eukaria
	most eukaryotes
	algae and plants
	chromosomes extrachromosomal elements amplified parts of the nuclear genome autonomous elements plasmids

	Sequer	icing Targ	et Complexity
_	clone	insert size	comment
	lambda	20 kb	size limited by phage head
ity	cosmid	40 kb	"
ıplex	P1	90 kb	"
con	PAC	150 kb	
asing	BAC	250 kb	
ncre	YAC	> 500 kb	
·=	chromoson	ne/	
•	genome	>1MB	

_			Exam	ple I		
150 kb	500 bases m	ean read	length			
fold	Total bases	te	otal gap length	Number of	Gap Length/# gaps	s= %
coverage	sequenced	e ^{-c}	in bases $=G_{L}e^{-c}$	Gaps = Ne ^{-c}	# bases per gap	complete
1	150000	0.37	55,500	111	500	63
2	300000	0.135	20,250	81	250	87.5
3	450000	0.05	7,500	45	167	95
4	600000	0.018	2,700	22	123	98.2
5	750000	0.0067	1,005	10	101	99.4
6	900000	0.0025	375	5	75	99.75
7	1050000	0.0009	135	2	68	99.91
8	1200000	0.0003	45	1	45	99.97
9	1350000	0.0001	15	1	15	99.99
10	1500000	0.00004	5 6	1	6	99.995

_			Exam	ple II		
4MB 500	bases mean r	ead leng	th			
fold	Total bases	t	otal gap length	Number of	Gap Length/# gaps	3= %
coverage	e sequenced	e ^{-c}	in bases $=G_Le^{-c}$	Gaps = Ne ^{-c}	<pre># bases per gap</pre>	complete
1	4000000	0.37	1,480,000	2960	500	63
2	8000000	0.135	540,000	2160	250	87.5
3	12000000	0.05	200,000	1200	167	95
4	16000000	0.018	72,000	576	125	98.2
5	2000000	0.0067	26,800	268	100	99.4
6	24000000	0.0025	10,000	120	83	99.75
7	28000000	0.0009	3,600	50	72	99.91
8	32000000	0.0003	1,200	19	63	99.97
9	3600000	0.0001	400	7	57	99.99
10	4000000	0.00004	5 180	4	45	99.995

intergenic regions reflect the overall GC bias of a genome (nearly random distribution of nucleotides) genic regions underlie natural selection pressures (maintenance of functional codons and evolution of function)

Genomic attributes for prediction of genes:

species independent

Base composition differences

species specific

Codon preference, splice site composition

	Annotation tools			
Data banks				
	GenBank+Embl SwissProt + PIR	DNA and Protein databases annotated proteins database		
Clustering				
	COG	clusters of orthologous groups		
	Prosite	motif search		
	Pfam	protein family domains		
	IPR	combination of motif databases		
Classification				
	GO	classification system		
	MIPSyeast	classification system		
		based on yeast		
Structures				
	Brookhaven structu	ure database		

	Interpro E	Dom	nain	S			
Domain	Description	DD	SC	AT	CE	DM	HS
IPR001687	ATP/GTP-binding site motif A (P-loop)	6.07%	0.57%	0.61%	0.32%	0.46%	0.33%
IPR000694	Proline-rich region	3.72%	NA	NA	NA	NA	NA
IPR000561	EGF-like domain	2.18%	0.02%	0.16%	0.68%	0.62%	1.28%
IPR000719	Eukaryotic protein kinase	1.93%	1.91%	4.07%	2.34%	1.79%	2.64%
IPR002290	Serine/Threonine protein kinase	1.89%	1.83%	3.34%	1.33%	1.22%	1.83%
IPR001245	Tyrosine protein kinase	1.71%	0.05%	1.84%	0.84%	0.65%	1.22%
IPR001680	G-protein beta WD-40 repeats	1.11%	1.63%	1.02%	0.80%	1.31%	1.34%
IPR003593	AAA ATPase superfamily	1.11%	0.95%	0.90%	0.40%	0.56%	0.46%
IPR000051	SAM nucleotidebinding motif	0.89%	0.33%	0.40%	0.25%	0.28%	0.20%
IPR001849	Pleckstrin homology (PH) domain	0.89%	0.47%	0.12%	0.41%	0.54%	1.24%
IPR002048	EF-hand	0.86%	0.26%	0.85%	0.65%	0.93%	1.15%
IPR001841	RING finger	0.82%	0.65%	1.82%	0.81%	0.85%	1.20%
IPR002085	Zinc-containing alc. dehyd. superfamily	0.82%	0.34%	0.15%	0.06%	0.07%	0.08%
	Reta-ketoacyl synthase	0 79%	0.03%	0.02%	0.02%	0.03%	0.01%

Model organisms (prokaryotic)		
Application	organisms	
Carbon Sequestration	Chlorobium tepidum, Synechococcus WH8102	
Energy Production	Methanococcus jannaschii	
Bioremediation	Dehalococcoides ethenogenes, Alcaligenes eutrophy	
Cellulose Degradation	Clostridium thermocellum	
Industrial Processes	Aquifex aeolicus (extremophiles)	
Technology Development,		
Pilot Projects	Mycoplasma genitalium	

Eukaryotic	c Model Organisms
Saccharomyces cerevisiae	single eukarytic cell
Dictyostelium discoideum	cell movement, signalling, multicellularity
Caenorhabditis elegans	multicellular organism
Chlamydomonas reinhardtii	'green yeast'
Arabidopsis thaliana	vascular plant
Physcomitrella patens	moss
Danio rerio	vertebrate, development
Fugu rubripes	", comparative genomics in vertebrates
Rattus rattus	mammal, physiology more similar to Hs than mous
Mus musculus	"
Homo sapiens	primate

			Ŭ			
	DM	CE	SC	AT	DD	HS
Size [Mb]	120	97	12	125	34	3000
Genes #	14,000	19,000	6,000	25,000	10,000	21,000
Repeats %	3	6	1	10	10	45
finished	2000	1998	1996	2000	2005	2001

Yeast Genome

small genome (12 MB)

~5600 genes

free living single cell

reduced abilities (no motility, phagocytosis, etc.

wide spectrum of manipulation methods

Other model fungi: Schizosaccharomyces pombe (fission yeast), Candida albicans

Drosophila melanogaster Originally, it was the species to study genetics: e.g. genes are related to proteins, the rules of genetic inheritance Standard map of polytene chromosomes: 102 bands Mutant flies of several thousand genes are available Today: embryogenesis (spatial and temporal patterns), eye development, behaviour, neuronal development 14.000 genes on 120 MB

Metagenomics

Shotgun analysis of environmental samples

benefits

overview of (unculturable) species in undefined samples revailing species genome analysis hypothesis on common prerequisites in a certain niche

drawbacks

overestimation of species numbers due to fragmentation species with low abundance not well defined species contigs without relatives are not easily categorised

should be flanked by sequencing of cultured species

