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Abstract The analysis of biomolecular data from high-throughput screens is
typically characterized by the high dimensionality of the measured profiles.
Development of diagnostic tools for this kind of data, such as gene expression
profiles, is often coupled to an interest of users in obtaining interpretable and
low-dimensional classification models; as this facilitates the generation of bi-
ological hypotheses on possible causes of a categorization. Purely data driven
classification models are limited in this regard. These models only allow for
interpreting the data in terms of marker combinations, often gene expression
levels, and rarely bridge the gap to higher-level explanations such as molecular
signaling pathways.
Here, we incorporate into the classification process, additionally to the expres-
sion profile data, different data sources that functionally organize these individ-
ual gene expression measurements into groups. The members of such a group
of measurements share a common property or characterize a more abstract bi-
ological concept. These feature subgroups are then used for the generation of
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individual classifiers. From the set of these classifiers, subsets are combined
to a multi-classifier system. Analysing which individual classifiers, and thus
which biological concepts such as pathways or ontology terms, are important
for classification, make it possible to generate hypotheses about the distinguish-
ing characteristics of the classes on a functional level.

1 Introduction

The high dimensionality of biomolecular data is one of the major challenges
for machine learning algorithms in the field of bioinformatics. The enormous
amount of measurements (e.g. gene expression levels) complicates the develop-
ment of reliable and interpretable models. Initial feature selection can improve
the performance of a trained model. This type of model reduction can aid in
identifying causes for the predictive ability of the model, which can then further
be validated in other experiments. However, feature sets derived in purely data
driven or model driven feature selection processes rarely allow a functional in-
terpretation. Measurements are typically selected according to a mathematical
performance measure and without respect to known relationships or depen-
dencies. Therefore, these feature sets can rather be regarded as a collection of
diverse fragments then as a description of biological processes such as molecu-
lar signaling cascades or pathways.

Functional relationships and dependencies can rarely be inferred from a sin-
gle dataset. Additional knowledge in the form of meta information, i.e. informa-
tion about information, is needed for grouping or selecting the measurements
in an interpretable way. This information can be extracted from a large cor-
pus of biological literature and databases, see e.g. Galperin et al (2015) for an
overview of current molecular databases. It aids in focusing on the construc-
tion of dedicated feature sets for a single biological process or a small set of
biological processes.

The idea of incorporating meta information in the training of predictive
models is not new. An overview on recent approaches is given by Porzelius
et al (2011). They can mainly be divided into two categories. The first one
consists of algorithms that try to guide traditional feature selection processes.
For example, Binder and Schumacher (2009) incorporate knowledge on sig-
naling pathways into a boosting model by penalizing the score of the single
base learners. Johannes et al (2010) developed a version of recursive feature
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elimination that is guided by the structure of a protein-protein interaction net-
work. The second category enforces the usage of the given meta information
more directly. Abraham et al (2010) construct an intermediate representation of
the original measurements. The measurements of one category are replaced by
a single feature. Lottaz and Spang (2005) developed an hierarchical classifier
system that follows the structure of the gene ontology.

In this work, we propose a knowledge based feature selection algorithm that
operates on a predefined vocabulary, i.e. a set of interpretable terms taken form
molecular signaling pathways, gene ontology, etc. These verbal phrases are
assumed to be reflected in the dataset by a known subset of gene expression
measurements. A sparse set of these terms will then be selected and combined
in the training of a multi-classifier system.

2 Methods

Classification is the task of predicting the class label y ∈ Y of an object on the
basis of a vector of measurements, often termed features, x = (x(1), . . . ,x(n))T ∈
X ⊆Rn. The underlying decision criterion is typically formalized as a decision
function (a classifier) c : Rn→ Y . A classifier c ∈ C is initially selected ac-
cording to a set of m labeled training examples L = {(x j,y j)}m

j=1 and denoted
by cL if the chosen training set is relevant:

C ×L
train−−−−−−→ C . (1)

An important property of a trained classifier is its risk in misclassifying new,
unseen samples

R(c) =
∫

I[c(x)6=y]dP(x,y). (2)

Here I[] denotes the indicator function.
The risk of a classifier is typically estimated in a resampling experiment as

the r× f cross-validation (Japkowicz and Shah, 2011). Here, the available data
S is split into f folds of approximately equal size. A number of f experiments
are performed in which each fold of samples is tested by a classifier trained
on the remaining samples. This procedure is repeated for r permutations of S
in order to make the cross-validation error independent from particular data
partitions. Let Li j and Ti j denote the training and test sets of the ith run and
the jth split. The error estimation of r× f cross-validation is then given by
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Rr× f =
1
r

r

∑
i=1

f

∑
j=1

1
|Ti j| ∑

(x,y)∈Ti j

I[
cLi j (x)6=y

]. (3)

A second important characteristic of a trained classifier is its interpretability.
It can be seen as the classifiers ability of giving insights into the properties of
a dataset (e.g. identifying important components or dependencies). The inter-
pretability of a trained classifier depends on two distinct properties, syntactical
and semantic interpretability.

Syntactical or structural interpretability
The interpretability of a decision function is dependent on its structural prop-
erties. The higher the complexity of a decision boundary the lower is its inter-
pretability. The syntactic properties of a classifier can mainly be derived from
its concept class C . Possible notions of structural complexity are the number
of parameters (Hastie et al, 2001) or the VC-Dimension (Vapnik, 1998).

Semantic interpretability
The interpretability of a classifier is also dependent on the set of measurements
that is utilized for a prediction. For instance a selected measurement seems to
influence a classification result while a deselected one does not or should not.
Other more abstract semantic explanations can be revealed by analyzing the
selected feature combinations or structures developed by the trained classifier.
Analyses of this type are for example the (gene set) enrichment analysis for
the analysis of feature sets (Hung et al, 2012) or principal component analy-
sis (Jolliffe, 2002). The abstract terms that can be detected by these methods are
typically strongly affected by noise and should be regarded as fuzzy concepts.

2.1 Feature selection

A common step in the training process of classification models is the selection
of informative features (Guyon et al, 2006)

C ×L
select−−−−−−→I = {i ∈ Nn̂≤n|ik < ik+1,1≤ ik ≤ n}. (4)

Here I indicates the set of all sorted and repetition free index vectors of maxi-
mal length n. A single element i ∈I is called a signature. It will be denoted
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by i = (i1, . . . , in̂(i))T , where n̂(i) ≤ n is the size of i. The elements of a signa-
ture indicate the selection of measurements x(i) = (x(i1), . . . ,x(in̂(i)))T that will
be considered in the learning phase of the classifier and for predicting the class
label of new unseen samples. It will be called a feature set or feature vector in
the following.

Feature selection is typically a data driven process. That is, a feature set
is chosen according to some kind of quality criterion that measures the "in-
formativeness" of the single measurements (univariate feature selection) or a
combination thereof (multivariate feature selection). If it can be applied without
any knowledge of any other parts of the training algorithm, it can be seen as a
preprocessing filter.

Feature selection becomes model driven, if knowledge about the concept
class C is incorporated into the selection process. Here, an evaluation criterion
is based on the performance (e.g. accuracy) of the classification model c ∈ C
trained on the current feature combination. The category of model driven fea-
ture selection methods comprises the category of wrappers, which evaluates
general performance measures, and embedded feature selectors, which evalu-
ates model specific characteristics.

Data driven and model driven feature selectors share a common search space
of 2n−1 feature combinations. It can hardly be analyzed exhaustively due to
its exponential growth in n. Most feature selectors are based on heuristic or
stochastic search strategies. They usually do not guarantee to find a global
optimal solution.

Although data or model driven feature selection clearly reduces the measure-
ments that are involved in generating a decision boundary, it is often question-
able if it really simplifies the semantic interpretability of a classifier. Measure-
ments selected according to some kind of performance criterion rarely can be
summarized under some interpretable term v. The reason for this is the lack of
knowledge about local, temporal or functional dependencies among the mea-
surements. In a purely data or model driven setting, these relationships have to
be learned from scratch and often remain undetected.

2.2 Knowledge-based feature selection

In this work we propose a knowledge based feature selection algorithm that
allows for incorporating an experimenter’s domain knowledge into the feature
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selection process. A domain expert often possesses knowledge about the ex-
perimental setup which typically can not be utilized by the machine learning
algorithm. For example, a possible functional grouping of features / measure-
ments is typically known to an experimenter but unknown to the algorithm. The
domain expert may also have knowledge about the subject of an investigation,
the corresponding measurements and their interactions, etc. For example, an
expert in molecular biology has some a-priori knowledge about the molecules
that are involved in a certain type of cellular process.

The interactions and relationships described above can typically be sum-
marized by a short verbal phrase that conveys some semantic knowledge to
the domain expert (e.g. video-signal, citrate cycle, insulin-secretion). We will
call such a phrase an abstract term or word v. A set of words will be called a
vocabulary V = {v1, . . . ,v|V |}. It reflects the external domain knowledge that
should be incorporated into an experiment. We will use a word or term v syn-
onymously with its associated signature i. That is a vocabulary can be seen as
a subset V ⊆I .

In contrast to a purely model or data driven feature selection, our method
constructs feature sets that can be seen as a union of the elements of a subset
of V

C ×L ×V
select−−−−−−→

⋃
v∈V ′

v, V ′ ⊆ V . (5)

That is, the final feature set will include all measurements that are associated
to the selected words V ′. Without loss of generality, we assume that a typical
vocabulary will result in |V | � |I | and ∀v ∈ V : n̂(v) > 1. In this case a
knowledge based feature selection will lead to a reduction of the search space
complexity from 2n−1 to 2|V |−1.

Although the final set of features is constructed by selecting a set of words,
it is questionable, if the corresponding union of feature sets really reflects the
chosen terms. These sets can be overlapping. Their union can implicitly include
signatures of additional terms. In order to keep the interpretability of the final
signature, we have chosen to couple our knowledge-based feature selection to
a multi-classifier system that evaluates each term independently.

2.2.1 Semantic base classifiers (SBC)

Our multi-classifier system is constructed of semantic base classifiers of type

cv : x(v) 7→ y. (6)
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Here cv denotes a classifier that is restricted to the signature of v and is therefore
associated to this term. The suitability of a term v is estimated in a 3× 3
cross-validation experiment on the learning set L . The signature is therefore
evaluated by a multivariate criterion.

A single term v∗ ∈ V can be chosen by ranking all terms in V according to
their achieved cross-validation errors

v∗ = arg min
v∈V

R3×3(Cv,L ), (7)

where Cv denotes a restriction of the chosen concept class C to the selected term
v. The final base classifier cv∗ ∈ Cv∗ will be trained on all samples in L and
will be seen as an expert in interpreting v∗. In principal, each training algorithm
and concept class can be chosen for the underlying training of a semantic base
classifier. For our experiments, we have chosen the nearest neighbor classifier
(NNC) proposed by Fix and Hodges (1951).

2.2.2 Semantic multi-classifier systems (SMCS)

The multi-classifier system itself can be seen as a decomposable decision rule
that is based on an ensemble of semantic base classifiers E = {ci}|E |i=1, ci ∈ C .
The final decision rule will be denoted by hE . The training of hE corresponds
to a selection process in which the most suitable set of experts is constructed.

We have chosen an unweighted majority vote hma j as a fusion architecture. It
returns the most frequent prediction of the base classifiers as its own prediction
and therefore allows a direct interpretation

hma j(x) = arg max
y∈Y

|{c(x) = y |c ∈ E }|. (8)

The fusion on a symbolic level prohibits interactions on a feature level and
conserves the interpretability of the final signature.

The ensemble members are selected in an iterative way. Similar to Equation 7
in each iteration t, a term vt is chosen that minimizes the error estimate in a
3× 3 cross-validation experiment on the samples of L . The selection of the
current term is restricted to those terms that were not selected before. Formally

vt = arg min
v∈Vt

R3×3(Cv,L ), (9)

with Vt = Vt−1 \{vt−1} and V1 = V . The corresponding base classifiers cvt are
again trained on all samples in L .
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3 Experimental setup and results

3.1 Basic setup

The proposed semantic multi-classifier systems are evaluated in the setting of
classifying gene expression profiles. We conduct nested cross-validation exper-
iments to assess their performance (Varma and Simon, 2006) on six different
microarray data sets. For the outer cross-validation experiment a 10×10 cross-
validation is chosen. The training data of every split is used to select a suitable
set of features (signatures) and to train the classifier model. The model selec-
tion process for this classifier is based on an internal 3×3 cross-validation as
discussed in Section 2.2.2. For all experiments, the nearest neighbour classifier
(NNC) was chosen as single or base classifier. The semantic classifier systems
(SBC and SMCS) were compared to NNCs that use all features and those that
incorporate a purely data-driven feature selection process, i.e. the top k features
with the highest absolute Pearson correlation to the class label were chosen.
The number of features k was predetermined with regard to the chosen vocab-
ulary (k = mean signature size, see Table 2) . All experiments were conducted
with the TunePareto-Software for classifier evaluation (Müssel et al, 2012).

Datasets
The experiments are conducted on different two class diagnostic classification
tasks. All are related to ageing associated diseases. The data sets are obtained
from high-throughput microarray experiments from different technological plat-
forms. All data sets are publicly available from the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) database. A brief summary
of the data is given in Table 1.

Vocabularies
In our experiments we have used three different sources of meta information:

1. KEGG – Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto,
2000) is a collection of molecular signaling pathways,

2. GO – Gene Ontology (Ashburner et al, 2000) is a standardized terminology
for the categorization of gene products, here we limited our terms to those
that have a set size in the interval from 10 to 500, and

http://www.ncbi.nlm.nih.gov/geo/
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Table 1 Basic characteristics of the analysed data sets with citation, Gene Expression Omnibus ID
(GEOid), feature number (Feat.), sample number (Samp.), and class distribution (Cl.0 and Cl.1).

Dataset Citation GEOid Feat. Samp. Cl.0 Cl.1

Alzheimer’s disease Liang et al (2008) GSE5281 54613 161 74 87
Leukemia Alcalay et al (2005) GSE34860 22215 78 21 57
Thyroid cancer Maenhaut et al (2011) GSE29265 54613 49 20 29
Lung cancer Hou et al (2010) GSE19188 54613 156 65 91
Melanoma Xu et al (2008) GSE8401 22215 83 31 52
Pancreatic cancer Zhang et al (2013) GSE28735 32321 90 45 45

Table 2 Characteristics of the vocabularies used from the MSigDB (Subramanian et al, 2005) (KEGG,
CHROM) and Gene Ontology (Ashburner et al, 2000) (GO), with the number of terms, the number of
elements associated to one term (signature) and the total number of covered genes in the database.

number of
terms

minimal
signature size

median
signature size

mean
signature size

maximal
signature size

total number of
covered genes

KEGG 186 10 53 69 389 5267
GO 3125 10 20 40 492 15992
CHROM 326 5 65.5 91 948 30010

3. CHROM – Chromosomal Location is the position of the corresponding gene
within the human genome.

An overview on their key characteristics is given in Table 2. The signatures
are extracted from MSigDB (Subramanian et al, 2005) and Gene Ontology
(Ashburner et al, 2000). All identifiers have been mapped to gene names. They
can be regarded as knowledge of domain experts in molecular biology.

3.2 Experimental results

In the following we exemplify our method of semantic multi-classifier systems
on selected combinations of vocabularies and data sets. Due to size limitations
we do not show all 18 combinations. The selected classification approaches
are by no means biased in terms of accuracy, etc., but rather give an arbitrary
assignment of data sets and used domain knowledge. In the following each
of the tested vocabularies is introduced by a short description first and then
validated on two datasets.
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Table 3 Results of the 10×10 fold cross-validation experiments with the KEGG pathways vocabulary.
Mean error rates in % ± standard deviations are given. Feature numbers are given (All features),
predetermined (Feature selection), or averages (SBC and SMCS).

Alzheimer’s disease Leukaemia
(Liang et al, 2008) (Alcalay et al, 2005)

cv-error features cv-error features

All features 9.32±0.72 54613 13.59±0.90 22215
Feature selection 10.31±1.53 69 4.10±0.81 69
SBC (KEGG) 7.37±1.34 325.41 9.23±1.99 174.16
SMCS (KEGG) 7.02±1.02 281.8 8.33±1.51 173.15

3.2.1 Kyoto Encyclopedia of Genes and Genomes (KEGG):

The Kyoto Encyclopedia of Genes and Genomes (Kanehisa and Goto, 2000) is
a manually curated collection of molecular signaling and metabolic pathways
that regulate different processes in or between cells. A single term from this
vocabulary reflects the molecules (more precisely the gene products) that are
involved in the signaling process. An example for a KEGG pathway is the
insulin signaling pathway. It provides the list of molecules that are affected
by the binding of hormone insulin to the corresponding receptor of a cell. We
tested two datasets using the KEGG-pathways as meta-information. A summary
can be found in Table 3.

Alzheimer’s disease data set
The Alzheimer dataset was collected by Liang et al (2008) and is available in the
Gene Expression Omnibus (GEO) under GSE5281. It comprises brain tissue
samples taken post mortem from subjects suffering from Alzheimer’s disease
(74 samples) and controls (87 samples). Each gene expression profile consists
of 54613 probe sets. Applied to all measurements the NNC achieves an cv-error
of 9.32%±0.72. With feature selection the cv-error is 10.31%±1.53. Lower
errors are achieved when meta information is used. Coupled to the vocabulary
of KEGG pathways a single semantic base classifier achieves an cv-error of
7.37%± 1.34. A semantic ensemble of three base classifiers achieves an cv-
error of 7.02%±1.02. Figure 1a) shows the frequency of the KEGG pathways
that are selected in the 10×10 cross-validation. The insulin signaling pathway
is selected in 91% of the cross-validation splits. It is known that this pathway
is impaired in Alzheimer patients (Candeias et al, 2012).
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Table 4 Results of the 10× 10 fold cross-validation experiments with the GO terms vocabulary.
Mean error rates in % ± standard deviations are given. Feature numbers are given (All features),
predetermined (Feature selection), or averages (SBC and SMCS).

Thyroid cancer Lung cancer
(Maenhaut et al, 2011) (Hou et al, 2010)

cv-error features cv-error features

All features 11.22±1.73 54613 8.14±0.61 54613
Feature selection 12.45±2.25 40 6.22±1.51 40
SBC (GO) 11.63±3.34 159.93 4.49±0.74 48.83
SMCS (GO) 6.73±2.16 208.67 4.74±1.14 92.77

Leukaemia data set
The Leukaemia dataset collected by Alcalay et al (2005) consists of 57 sam-
ples of acute myeloid leukaemia with aberrant cytoplasmic localization of nu-
cleophosmin following mutations in the NPM putative nucleolar localization
signal and 21 samples without this specific mutation (GSE34860). Each gene
expression profile consists of 22215 probe sets. Using all features leads to the
lowest performance (13.59%± 0.90). With feature selection obtains the best
cv-errors (4.10%±0.81). Utilizing the vocabulary of KEGG pathways the best
semantic base classifier improves the cv-error (compared to all features) by
4% to 9.23%±1.99. The semantic ensemble is able to lower the error rate by
another percent (8.33%±1.51). In this case the KEGG pathways hematopoi-
etic cell lineage and cell adhesion molecules cams are selected most frequently
(Figure 1b). Both terms have been reported in the context of leukaemia (Bonnet
and Dick, 1997; Noto et al, 1994).

3.2.2 Gene Ontology (GO):

The Gene Ontology (Ashburner et al, 2000) is currently one of the most promi-
nent attempts of constructing an organized and standardized terminology for
the categorization of gene products. It provides an hierarchical ontology of
terms that covers three different fields: biological processes, associated cellular
components and molecular functions. Most of these terms are linked to man-
ually curated gene lists. The Gene Ontology provides for example the term
cell aging, which is linked to the list of genes that are known to influence the
aging process of cells. The vocabulary of GO terms was tested in two different
scenarios (Table 4).
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Thyroid cancer
The Thyroid cancer dataset was collected by Maenhaut et al (2011) (GSE29265).
Its 49 thyroid samples have been categorised into non-tumour control (20 sam-
ples) and thyroid carcinoma (29 samples). The dimensionality of the dataset is
54613. Compared to the experiments with all measurements and data driven
feature selection (error rates 11.22%±1.73 and 12.45%±2.25) the knowledge-
based ensemble clearly improves the result. The error rate for the semantic
ensemble is 6.73%± 2.16. A single base classifier is not able to reach this
performance (11.63%±3.34). Looking at the selected categories in the cross-
validation experiment (Figure 1c) of the ensemble, we find the chondroitin
sulfate metabolic process term as the one which is most frequently selected
(Infanger et al, 2006).

Lung cancer
The Lung cancer dataset (GSE19188) collected by (Hou et al, 2010) comprises
samples of non-small cell lung cancer (91 samples) and adjacent normal tissue
(65 samples). Each profile consists of 54613 probe sets. The mean cv-error
achieved by the NNC on all features is 8.14%±0.61. By using data driven fea-
ture selection this result can be improved to 6.22%±1.51. On this dataset a sin-
gle semantic base classifier achieves a slightly better classification performance
than the ensemble. The cv-errors are 4.49%±0.74 for the base classifiers and
4.74%± 1.14 for the ensemble. The most frequently selected term is related
to ascorbic acid (vitamin C) metabolism (Figure 1d). Ascorbic acid has been
reported to have the ability to kill cancer cells under certain conditions (Chen
et al, 2005).

3.2.3 Chromosomal location:

The vocabulary of chromosomal locations (CHROM) can also be used to orga-
nize the set of gene expression levels. Here, we restrict ourselves to the human
genome. It is organized in 22 pairs of autosome chromosomes and one pair sex
chromosomes. Each of the chromosomes can be divided into several cytobands.
They can be used to indicate local aberrations. A single term out of this vo-
cabulary gives the index of the chromosome, the chromosome arm (p = short
arm, q = long arm), and the cytogenetic bands position on the chromosome arm.
For example, chr17p12 denotes band 1, subband 2 on the short arm of the 17th
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Table 5 Results of the 10× 10 fold cross-validation experiments with the chromosomal locations
vocabulary. Mean error rates in % ± standard deviations are given. Feature numbers are given (All
features), predetermined (Feature selection), or averages (SBC and SMCS).

Melanoma Pancreatic ductal adenocarcinoma
(Xu et al, 2008) (Zhang et al, 2013)

cv-error features cv-error features

All features 8.19±1.11 22215 24.67±1.95 32321
Feature selection 8.92±2.39 91 23.56±3.28 91
SBC (CHROM) 7.59±1.14 165.02 22.89±3.24 69.13
SMCS (CHROM) 6.51±1.63 148.39 19.78±3.00 65.79

chromosome. Our experiments with the vocabulary of chromosomal locations
are summarized in Table 5.

Melanoma
The Melanoma dataset (Xu et al, 2008) was collected with the purpose to distin-
guish between primary melanomas and melanoma metastasis (GSE8401). Both
classes are represented by 31 and 52 samples, respectively. The dimensionality
of the corresponding gene expression profiles is 22215. For this dataset the data
driven feature selection (cv-error: 8.92%±2.39) performs worse than using all
measurements (cv-error: 8.19%±1.11). Using the vocabulary of chromosomal
locations (CHROM) as meta information allows to improve the performance.
A single semantic base classifier achieves an cv-error of 7.59%± 1.14. The
semantic ensemble improves the cv-error to 6.51%±1.63. The most frequently
selected chromosomal band is 9q34 (Figure 1e). It contains the ASS gene which
is known to play a role in the cell death in melanomas (Savaraj et al, 2007).

Pancreatic ductal adenocarcinomas
The second dataset tested with chromosomal locations was collected by Zhang
et al (2013) (GSE28735). Gene expression values of 45 pancreatic ductal ade-
nocarcinomas and 45 adjacent non-tumour tissues have been measured in pro-
files of 32321 probe sets. The best results (19.78%± 3.00) are achieved by
ensembles using the vocabulary of chromosomal locations as meta informa-
tion. Semantic base classifiers are able to achieve an cv-error of 22.89%±3.24.
Using all features or data driven feature selection leads to 24.67%±1.95 and
23.56%±3.28 cv-error, respectively. For this dataset three chromosomal bands
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Fig. 1 Frequencies of the terms selected by the semantic multi-classifier system (SMCS) in the 10×10
cross-validation experiments. In total the frequency of 300 terms (= 10×10×3) is depicted in each
diagram (a to f), normalized to the 100 experiments conducted each. The top nine selected terms are
shown. The tenth bar "others" summarizes all categories that are selected less frequent.
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are selected with comparable frequencies in the cross-validation experiment
(Figure 1f). The ensemble selects Xq11, 1q31 and 18q21 in most of the cases.
For 1q31 and 18q21 an association to pancreatic cancer has been reported
(Chen et al, 2003; Hahn et al, 1995).

4 Conclusion

We present a knowledge based approach for the design of classifier systems
that are interpretable in abstract terms. The basic algorithm incorporates meta
information in the form of a vocabulary of signatures (terms) that can be used
for constructing a decision rule. The design of the algorithm ensures a high-
level interpretability and eliminates the need for revealing an interpretation
via reconstruction methods. Our experiments suggest that knowledge based
classifiers can be applied beneficially in the field of analyzing gene expression
profiles. The constructed models fit into the biomedical context of the analysed
diseases. The classification results indicate that selecting only a single term
out of a vocabulary neither leads to optimal classification performance nor
results in a highly stable selection. Combining a small set of terms improves
the classification performance in almost all experiments.

Compared to other approaches the proposed multi-classifier systems excel
other approaches by their superior interpretability. Yet, there might be more
sophisticated classifier systems that outperform the proposed methods in terms
of prediction accuracy. Subsequent work will be focused on the design of classi-
fier systems and other model types that also use continuous outcomes that allow
a suitable tradeoff between interpretability and prediction accuracy. For genetic
data the presence of close genetic relationships among collected individuals
may also bias the results (Habier et al, 2007; Dekkers, 2010), for expression
data this is unclear. Integrating meta information in the form of these vocabu-
laries might also be useful for guiding the selection of causal models (Mayo,
1996; Pearl, 2009).

The experiments of this investigation reveal an additional question for the de-
sign of a knowledge based classifier system. Although the selected kind of meta
information will mainly be determined by the design of a medical/biological
study, there may be some a-priori hints on the suitability of a vocabulary of sig-
natures. These hints might be given in the structural properties of a vocabulary
(e.g. overlap between signatures) but also in their semantic interpretation (e.g.
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local information vs functional information). This question can be addressed
in more detailed analyses on available sources of meta information for gene
expression profiles.
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