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ABSTRACT: Next-generation sequencing and the avail-
ability of high-density genotyping arrays have facilitated
an analysis of somatic and meiotic mutations at
unprecedented level, but drawing sensible conclusions
about the functional relevance of the detected variants
still remains a formidable challenge. In this context, the
study of allelic imbalance in intermediate RNA pheno-
types may prove a useful means to elucidate the likely
effects of DNA variants of unknown significance.
We developed a statistical framework for the assessment
of allelic imbalance in next-generation transcriptome
sequencing (RNA-seq) data that requires neither an
expression reference nor the underlying nuclear geno-
type(s), and that allows for allele miscalls. Using
extensive simulation as well as publicly available whole-
transcriptome data from European-descent individuals in
HapMap, we explored the power of our approach in
terms of both genotype inference and allelic imbalance
assessment under a wide range of practically relevant
scenarios. In so doing, we verified a superior performance
of our methodology, particularly at low sequencing
coverage, compared to the more simplistic approach of
completely ignoring allele miscalls. Because the proposed
framework can be used to assess somatic mutations and
allelic imbalance in one and the same set of RNA-seq
data, it will be particularly useful for the analysis of
somatic genetic variation in cancer studies.
Hum Mutat 32:98–106, 2011. & 2010 Wiley-Liss, Inc.
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Introduction

Next-generation sequencing and the availability of high-
density single-nucleotide polymorphism (SNP) genotyping arrays
have facilitated an assessment of human genetic variation, and
of its association with clinical or intermediate phenotypes, at
unprecedented level. However, drawing sensible conclusions about

the functional relevance of the large number of somatic and
meiotic variants that are currently uncovered still remains a
formidable challenge. Available technologies simply do not allow
functional annotation to proceed at a similar pace as genotyping,
thereby rendering the biological interpretation of the observed
genotype–phenotype relationships difficult. One of the auxiliary
approaches to this problem is the analysis of intermediate RNA
phenotypes, such as allelic imbalance [Yan et al., 2002], which is
defined as a substantial departure of autosomal transcription
activity from parity. A multitude of mechanisms may underlie
allelic imbalance, including mutations/polymorphisms in cis-acting
regulatory elements that affect transcription [Ge et al., 2009],
splicing [Caux-Moncoutier et al., 2009], RNA stability, nonsense-
mediated decay, and methylation status [Wang et al., 2008].
Random mono-allelic expression, where occasionally only one or
the other of the two alleles present in a given cell is transcribed, has
also been found to be common for autosomal genes [Gimelbrant
et al., 2007; Pastinen et al., 2004; Pollard et al., 2008; Wang et al.,
2007]. Allelic imbalance analysis has been featured successfully in
studies of alternative splicing [Caux-Moncoutier et al., 2009],
micro-RNA directed gene repression [Kim and Bartel, 2009] and
cancer transcriptome specificity [Nakanishi et al., 2009], and it
bears the potential to advance greatly the functional interpretation
of variants of unknown significance [Caux-Moncoutier et al., 2009;
Domchek and Weber, 2008]. Technically, most approaches to allelic
imbalance analysis in the past were based upon targeted
chemistries, such as pyrosequencing [Kim and Bartel, 2009] and
SNaPshot assays [Caux-Moncoutier et al., 2009]. At the same time,
genotyping microarrays have been adapted for use in RNA-based
protocols as well, moving from low-resolution panels [Nakanishi
et al., 2009; Pant et al., 2006] to increasingly denser marker sets
[Ge et al., 2009; Gimelbrant et al., 2007; Liu et al., 2010]. These
developments have now facilitated an assessment of allelic
imbalance at the genome-wide level.

Despite the great attention paid to allelic imbalance in scientific
practice, a formal framework for its statistical analysis, particularly
in genome-wide settings, is only beginning to emerge. A straight-
forward approach in this direction has been the pin-pointing of
SNPs with clearly disparate genotypes [Coenen et al., 2008;
Nakanishi et al., 2009] or copy numbers [Lamy et al., 2007] in
different samples, such as cancer versus normal tissue or blood
versus urine. A similar all-or-nothing approach [Gimelbrant et al.,
2007] was based upon contrasting heterozygous nuclear genotypes
with homozygous transcriptome-derived genotypes. Other pro-
posals involved the definition of ‘‘normal’’ (i.e., balanced)
expression and required expression level ratios of mutant versus
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wild-type allele to fall into a two standard deviation range [Caux-
Moncoutier et al., 2009] or 99% confidence interval [Palacios
et al., 2009] around the mean taken in a reference population, or
into a fixed (77%) range around parity [Loeuillet et al., 2007].
More sophisticated methods involved one-sided Binomial tests
[Degner et al., 2009; Kim and Bartel, 2009], t-tests [Yamamoto
et al., 2007], regression-based tests [Chen et al., 2008], chi-square
tests [Heap et al., 2010], or segment analysis to identify closely
linked SNPs with similar allele-specific expression levels [Staaf
et al., 2008]. In addition, the joint use of genome-wide expression
and nuclear genotype data has been proposed as a means to
augment haplotype-based eQTL identification [Montgomery
et al., 2010; Pickrell et al., 2010], but these methods cannot be
applied directly to study allelic imbalance at single variants.

Here, we present a novel statistical framework for the
assessment of allelic imbalance using RNA-seq data. Our method
is applicable both with and without knowledge of the underlying
nuclear genotype(s), does not require an expression reference,
and allows for sequencing errors. We evaluated this framework
using extensive simulation as well as RNA-seq data from HapMap
individuals in order to explore its power and limits for a wide
range of practically relevant scenarios.

Materials and Methods

Statistical Inference of Allelic Imbalance from
Transcriptome Data

Likelihood ratio test for allelic imbalance when the nuclear
genotype is known

For every heterozygous single-nucleotide substitution (hence-
forth simply referred to as ‘‘substitution’’) in a given individual,
there are two correct types of call from aligned transcriptome
sequencing reads, namely, those of the two constituent alleles
A1 6¼A2. Let fA1 and fA2 5 1�fA1 denote the actual frequencies of
A1 and A2 among all transcripts, respectively. Erroneous calls
yield one of the two remaining nucleotides M1 6¼ M2. Let cX

denote the number of reads for which nucleotide X has been called
and let c 5 cA11cA21cM11cM2 be the overall number of reads.

If there are no erroneous calls, then the number of calls of either
nuclear allele of a given substitution should follow a binomial
distribution, b(c, 1/2), under the null hypothesis of balanced
transcription, fA1 5 fA2 5 1/2. In this case, the optimal statistical test
for allelic imbalance would be a binomial test. In practice,
however, sequencing data will almost always contain calling errors,
which we accommodate in our framework by introducing two
types of error parameter. First, let p denote the probability that
a call from a given read is wrong, and we assume that this
probability is independent of the correct call. Second, we
introduce conditional probabilities pX,Y of calling nucleotide X,
given that a miscall has occurred and that the correct call would
be Y. Valid calls for a heterozygous SNP occur either when A1 or A2
are called correctly, or when one allele is erroneously called from
the other. Invalid calls are always miscalls. This implies that the
log-likelihood of f 5 fA1, given numbers of calls fcXg, equals

ln Lðf Þ ¼ const1cA1 � lnðf � ð1� pÞ1ð1� f Þ � p � pA1;A2Þ

1cA2 � lnðð1� f Þ�ð1� pÞ1f �p�pA2;A1Þ

1cM1 � lnðp � ½f � pM1;A11ð1� f Þ � pM1;A2�Þ

1cM2 � lnðp � ½f � pM2;A11ð1� f Þ � pM2;A2�Þ1 ð1Þ

For the time being, we assume that proper estimates of the
miscalling probabilities are available. If the nuclear genotype
underlying the transcriptome data is known, then the identity of
A1 and A2 is also known, and a straightforward likelihood ratio
test for allelic imbalance is given by

GðcA1; cA2; cM1; cA2;Þ ¼ �2 ln
Lð12Þ

max
f

Lðf Þ
: ð2Þ

Under H0, statistic G follows a chi-square distribution with
1 degree of freedom. Maximization of L(f) in (2) can be done
numerically using, for example, the optimize function of the stats
package of the R statistical software [R Development Core Team,
2010] (http://www.r-project.org/).

Inference of the nuclear genotype from transcriptome data

Transcriptome sequencing can be used to infer allelic imbalance
even if the underlying nuclear genotype is unknown. Such an
endeavor may seem paradox at first glance because, by definition,
extreme allelic imbalance cannot be distinguished from homo-
zygosity using transcriptome data alone. However, with less than
extreme allelic imbalance, an underlying heterozygous genotype
may still be sufficiently more probable than other genotypes,
assuming that there is no allelic imbalance. Therefore, it appeared
worthwhile exploring the power of a two-stage approach whereby
the most likely nuclear genotype is first inferred from the
transcriptome sequence data using Bayes’ theorem under the
assumption of balanced transcription, followed by a test for allelic
imbalance in the case of a sufficiently well supported heterozygous
genotype (posterior probability 40.5).

Because the true nuclear genotype is assumed to be unknown
here, all possible genotypes are assigned an equal prior probability,
which implies that their posterior probability gets proportional
to the corresponding likelihood for the transcriptome data. For
a presumed heterozygous genotype A1A2, this likelihood is
calculated from formula (1) using miscalling probabilities that
were estimated from empirical data as described below. For a
homozygous nuclear genotype A1A1, there is only one correct
allele (namely, A1), whereas the other three nucleotides (M1, M2,
and M3) represent miscalls. In this case, the log-likelihood equals

const1cA1 � lnð1� pÞ1cM1 � lnðp � pM1;A1Þ1cM2 � lnðp � pM2;A1Þ

1cM3 � lnðp � pM3;A1Þ

and the posterior probability of A1A1 gets proportional to the
antilog of this expression.

Estimation of Miscalling Probabilities

Cell lines, genotyping, and sequencing

Transcriptome sequence data were generated for the publicly
available lymphoblastoid cell lines GM10847, GM12760,
GM12864, GM12870, and GM12871 (Coriell Institute for Medical
Research, Camden, NJ) as follows. Cells were cultivated as
suggested by the supplier. DNA was extracted from harvested
cells using the Qiagen DNA extraction kit (Cat.No. 13343, Qiagen,
Hilden, Germany). Genotyping of single-nucleotide polymorph-
isms (SNPs) using Affymetrix Chip 6.0 and the Illumina Omni
chip (San Diego, CA) was performed according to the manu-
facturers’ protocols. The genomic positions of observed nucleotide
substitutions were retrieved from the UCSC database (http://
genome.ucsc.edu/; NCBI Build 36.1; genome freeze hg18) [Kent
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et al., 2002; Pruitt et al., 2005]. RNA was extracted from 1� 108

cells using the RNEasy kit (Qiagen). The mRNA-Seq libraries for
Illumina/Solexa GAII sequencing were prepared according to the
manufacturer’s instructions, starting with 5 mg RNA. Libraries
were sequenced on two lanes per sample, generating between 27
and 33 million 76-nt reads for each cell line. An overview of the
generated sequence data is provided in Supp. Table S1.

Alignment and sequence analysis

FASTQ-formatted Illumina/Solexa sequences were mapped
onto the human genome (hg18) [Rhead et al., 2010] and a
collection of splice junctions using the novoalign software package
v2.05.13 (http://www.novocraft.com/). The mapping procedure
was run in SE mode (parameters -R 30 -r All -e 5) and included
adapter trimming (option -a). A comprehensive list of known
exons was compiled from UCSC knowngenes. Only splice
junctions from adjacent exons located within a gene region were
considered. Each of the generated splice junctions was 140 bp in
length, containing the last 70 bases of the upstream exon and the
first 70 bp of the downstream exon. Use of 70 bp of flanking
sequence ensured that all junction-mapped reads matched a
minimum of 5 bp on either side of the junction. Only reads that
mapped to a unique position in the genome were considered for
further analysis (between 66% and 75% of reads per cell line).
Positions with low sequencing quality (phred quality o10) were
excluded.

Only those SNPs were used for the estimation of miscalling
probabilities for which the nuclear genotype (Affymetrix 6.0 or
Illumina Omni) and transcriptome sequence data with at least
20-fold coverage were available (see below). SNPs known to be
located in the same region as imprinted genes were excluded.
The sequencing data from all five cell lines (Supp. Table S1) were
pooled, providing a total of 66,943 SNPs for analysis. Although
some of these data represented multiple (up to five) counts of
one and the same SNP, pooling was deemed reasonable since
miscalling probability estimates obtained from individual cell lines
were not found to be significantly different (data not shown).

Maximum-Likelihood Estimation of Miscalling Probabilities

The test for allelic imbalance defined in formulae (1) and (2)
requires knowledge of the unconditional and conditional miscal-
ling probabilities p and {pX,Y}, respectively. If nuclear genotypes
for a sufficiently large number of SNPs are available to
complement RNA-seq data, then these error parameters can be
estimated empirically. Thus, any additional alleles called for a
homozygous genotype, say YY, must be due to an error so that the
relative proportions of the different miscalls X 6¼Y provide
reasonable estimates of pX,Y. Obviously, this approach assumes
the absence of errors in the assignment of the nuclear genotype
and, in fact, includes these errors into p.

An assessment of allelic imbalance is only meaningful for
heterozygotes, and because the miscalling probability p may vary
depending upon whether the allele under study is present in
homozygous or heterozygous state, only heterozygous nuclear
genotypes were used for the maximum-likelihood estimation of p
as well. Lege artis estimation of p would have involved maximization
of the global log-likelihood function according to (1), taking into
account SNP-specific values of f and a single genome-wide value of
p. In this case, however, the global log-likelihood would have
depended upon f values for thousands of SNPs, thereby rendering

maximization with respect to p computationally intractable. We
therefore performed SNP-wise maximization of (1) with respect to f
and p, and used the average of the SNP-specific estimates of p in
subsequent analyses. Maximization of (1) was again carried out
numerically, using the optim function of the R stats package with
the ‘‘L-BFGS-B’’ option set in order to restrict the possible
parameter space to [0,1] [R Development Core Team, 2010].

Framework Evaluation by Simulation

We carried out simulations to evaluate the power of the
statistical framework described above for correctly inferring
nuclear genotypes and for detecting allelic imbalance. Simulations
and statistical analyses were implemented in R v2.10.1 [R
Development Core Team, 2010] and Perl.

Genotype simulation

An idealized genome comprising 500,000 nucleotide triplets
was generated picking triplets randomly from their frequency
distribution in the human genome (http://www.kazusa.or.jp/
codon/). For 125,000 of these triplet (25%), the central triplet
position was deemed to carry a single nucleotide substitution, and
the alternative triplet center allele was chosen at random in
accordance with known nearest-neighbor-dependent mutation
rates in the human genome [Krawczak et al., 1998]. All
substitution-carrying triplets were henceforth assumed to be
heterozygous in the simulated genome, whereas the remaining
375,000 triplets were deemed to be homozygous.

Transcript simulation

Various sets of sequencing data were generated assuming
coverage levels of 5, 10, 20, 50, and 100 reads, respectively, for each
triplet. For heterozygous genotypes, each coverage level was
combined with one of six levels of allelic imbalance, defined by a
minor transcript frequency of 0.5, 0.4, 0.3, 0.2, 0.1, or 0.05. Errors
were added to the reads by randomly changing the call at the
central triplet position in accordance with empirical estimates of
the miscalling probabilities p and pX,Y. To emulate noisy RNA-seq
data, we also performed simulations adopting a miscalling
probability of p5 0.05.

Genotype inference and assessment of allelic imbalance

We evaluated our statistical framework separately in terms of its
genotype inference and allelic imbalance detection capabilities.
This means that only simulated data from correctly inferred
heterozygotes were tested for allelic imbalance. Joint power
estimates for both steps were taken as equal to the product of
the two individual power estimates. Real transcriptome sequen-
cing data usually comprise variants with different read coverage
and different allelic imbalance. Simulations assuming a single
coverage level may therefore lead to unrealistic power estimates.
To avoid such a mistake, we first pooled all simulated data sets
with the same minor transcript frequency, but different coverage
level, and randomly split the two pools of homozygotes and
heterozygotes into 10 equally sized subsets each. Then, following a
Latin-Square-like crossvalidation design, five subsets of homo-
zygous and five subsets of heterozygous genotypes were used for
parameter estimation in the ‘‘training stage’’ of each validation
round. For the remaining subsets comprising the ‘‘validation
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stage,’’ the underlying genotype was inferred as described above,
using the miscalling probability estimates obtained in the training
stage. The power of correct genotype inference was then estimated
by the proportion of correctly inferred genotypes, separately for
homo- and heterozygotes. Next, allelic imbalance was tested
statistically only for those heterozygous genotypes that were
inferred correctly in the validation stage. The power of allelic
imbalance detection was estimated as the proportion of P-values
below either 0.05 or a threshold that was Bonferroni-adjusted
to the number of tested genotypes. The validation procedure
comprised 10 rounds so that each subset was used five times
for training and five times for validation. Substitution-specific
P-values from the allelic imbalance tests were averaged over those
substitutions for which the heterozygous nuclear genotype was
inferred correctly in all five validation pools.

Test for allelic imbalance ignoring allele miscalls

To assess the relative benefit of taking allele miscalls explicitly
into account in our statistical framework, we also subjected both
the simulated and the HapMap RNA-seq data to a simple chi-
square test for equal frequencies of the genotype-constituting
alleles, as proposed by Heap et al. [2010].

Descriptive statistical analysis

The R software v2.10.1 [R Development Core Team, 2010] was
used for statistical analysis and for creating graphs. Receiver
operator characteristic (ROC) curves were created using 100
equidistant P-values per combination of coverage level and allelic
imbalance ratio. The corresponding area under the curve (AUC)
was calculated by means of linear interpolation.

Application to Real Data

We evaluated our approach using the publicly available RNA-seq
data from 60 HapMap individuals of European descent (CEPH
Utah residents with ancestry from northern and western Europe;
CEU) [Montgomery et al., 2010]. Alignment files (all_sam_data.tar)
and derived genotypes (RNASEQ60_snps.full.txt.gz) were down-
loaded from a dedicated Web site (http://jungle.unige.ch/rnaseq_
CEU60/). We only considered reads mapping to chromosomes 1
to 22, according to the UCSC database (http://genome.ucsc.edu/;
NCBI Build 36.1; genome freeze hg18) [Kent et al., 2002; Pruitt
et al., 2005]. For each genotype, the sequence read information
was extracted from the alignment file using SAMtools [Li et al.,
2009]. Information on the site-specific reads in all individuals
was then merged into a single data set. Where information on
one and the same SNP was available for more than one individual,
the respective genotypes were considered independent observa-
tions. For comparison, we again applied a chi-square test for
equal allele frequencies in addition to our proposed likelihood
ratio test.

Results

Estimates of Miscalling Probabilities

From the analysis of the cell line transcriptome data for SNPs
with known nuclear heterozygous genotype, we estimated p to be
2.17� 10�3. The conditional miscalling probabilities pX,Y as
estimated from homozygous SNPs were found to be substantially

skewed (Table 1). Thus, although G was found to be preferentially
(450%) miscalled as A, and C as T, both A and T were miscalled
as either G or C with nearly equal probability (�45%). The
remaining base (i.e., T or A) was approximately four times less
likely to represent the respective miscall.

Genotype Inference

In many RNA-seq studies, the nuclear genotypes of the
investigated substitutions will be unknown, and the available
transcript data will have to be used to infer them. Our simulations
revealed that a heterozygous genotype can often be inferred
reliably at low to moderate levels of allelic imbalance (up to
80:20), even at a coverage as low as 20 reads (Table 2). At a
coverage of five reads, heterozygous genotypes were still identified
correctly in 480% of cases if the allelic imbalance was less than
70:30. At 50-fold or higher coverage, the proportion of correctly
identified heterozygous genotypes was found to exceed 97%. On
the other hand, extreme allelic imbalance (95:5) could scarcely be
distinguished from homozygosity, particularly at high coverage.
Strong allelic imbalance (90:10) appeared to represent a change
point at which a heterozygous genotype was inferred correctly in
50 to 60% of the replications, except for extremely low coverage
(i.e., 5 reads). Homozygous genotypes were inferred correctly in
almost all cases (from 98.9% at 10-fold or lower coverage to 100%
at 50-fold or higher coverage). For virtually all simulated
genotypes (499.999%), the maximum posterior probability
exceeded 50%, thereby leading to the inference of a (correct or
incorrect) genotype with sufficient confidence.

Assessment of Allelic Imbalance

For correctly inferred (or known) heterozygous genotypes, the
proposed likelihood ratio test was capable of discriminating well
between the presence and absence of allelic imbalance (Fig. 1 and
Table 3). Thus, the AUC at balanced transcription (50:50) was
approximately 0.50 as expected, with some random variation

Table 1. Estimates of the Conditional Miscalling Probabilities
pX,Y Obtained from the Pooled Homozygous SNPs of Five Human
Cell Lines (see Supp. Table S1)

Allele Call (X)

A C G T

Nuclear allele (Y) A – 0.40210 0.48006 0.11784

C 0.22214 – 0.25456 0.52330

G 0.53012 0.26919 – 0.20070

T 0.13354 0.44217 0.42429 –

Table 2. Percentage of Simulated Substitutions (n 5 125,000)
with Correctly Inferred Heterozygous Genotype

Sequencing coverage

Allelic imbalance 5� 10� 20� 50� 100�

50:50 93.5 98.9 100.0 100.0 100.0

60:40 90.9 97.9 99.8 100.0 100.0

70:30 82.8 93.0 98.3 100.0 100.0

80:20 67.2 79.7 88.3 97.3 99.6

90:10 40.9 51.7 51.4 52.6 52.8

95:5 22.8 29.5 20.1 9.9 3.6

HUMAN MUTATION, Vol. 32, No. 1, 98–106, 2011 101



observed at low coverage (5- to 50-fold). Slight allelic imbalance
(60:40) required at least 100-fold coverage to yield satisfactory
AUC values (40.85). The AUC exceeded 0.95 for moderate
imbalance (70:30) at 50-fold coverage, and for strong imbalance
(80:20) already at 20-fold coverage. For stronger imbalance or
higher coverage, the AUC approached 1.0. The AUC values of the
chi-square test were usually smaller than those of the likelihood
ratio test, partially because the limited number of reads per SNP

allowed only a small number of different p values to be obtained
by the former.

At a nominal significance level of 0.05, the statistical test for
allelic imbalance defined in formulae (1) and (2) showed high
power (497%) to detect strong imbalance (90:10) at 20-fold
coverage, and still had 485% power at 10-fold coverage (Table 4).
Higher coverage was required to detect more moderate imbalance
with reasonable power. Coverage of only five reads resulted in a
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Figure 1. Receiver operator characteristic (ROC) curves for the detection of allelic imbalance using either a likelihood ratio test (thick line) or a
chi-square test (thin line). Columns correspond to different levels of sequencing coverage, lines correspond to different levels of allelic imbalance
(125,000 simulated substitutions; only substitutions with a correctly inferred heterozygous genotype were considered). For details, see text.
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nearly complete lack of power to detect any allelic imbalance. With
extremely high coverage (500-fold; data not shown), the test
would achieve 499% power to detect even weak imbalance
(60:40). The likelihood ratio test showed only minor inflation of
the type I error in the simulations, with a maximum of 0.099
observed at 10-fold coverage (see ‘‘50:50’’ line in Table 4).

The chi-square test showed similar power as the likelihood ratio
test and also the same inflation of the type I error at 20-fold or
higher coverage (Table 4). For 10-fold coverage, however, the
power of the chi-square test was substantially lower than that of
the likelihood ratio test. Moreover, with a notably increased
miscalling probability of 5%, where both tests were found to
perform poorly (Supp. Table S2), the likelihood ratio test still
retained at least modest power at low coverage (10 reads), whereas
the chi-square test failed to provide any power.

Simultaneously investigating hundreds of thousands of SNPs
for allelic imbalance may represent a serious multiple-testing
problem. Therefore, we also quantified the power of the two tests
using Bonferroni correction for the number of correctly inferred
genotypes (Table 3). As was to be expected, the power dropped
dramatically upon Bonferroni correction, in particular at 20-fold
or lower coverage for which the power to detect allelic imbalance
approached zero (Table 4). At least 50-fold coverage was required
to detect strong imbalance (90:10) with 485% power, whereas
100-fold coverage was required for moderate imbalance (80:20).
Again, the power of the w2 test was found to be substantially lower
than that of the likelihood ratio test for many combinations of
coverage and allelic imbalance (Table 4). Moreover, an increased
allele miscalling probability of 5% required at least 20-fold
coverage for the chi-square test to provide any power to detect
imbalance whereas the likelihood ratio test yielded satisfactory
power already at 10-fold coverage (Supp. Table S2).

Assessment of Allelic Imbalance in Real Transcriptome
Sequence Data

We applied both the likelihood ratio test and the chi-square test
to real autosome-wide RNA-seq data [Montgomery et al., 2010]
for which auxiliary nuclear genotype information was available in
HapMap. Given the lack of power of both tests at low coverage, we
restricted our analysis to SNPs with at least five reads. We also
limited the maximum coverage to 100 reads per SNP because of
the rarity of SNPs with even higher coverage. When counting each
SNP multiple times according to the number of individuals
analysed, a total of 434,509 SNPs met the above criteria. Of these,
a total of 139,535 (32.1%) were found to be heterozygous. Our
genotype inference framework correctly inferred 82.2% of the
heterozygous SNPs, whereas the remainder were deemed homo-
zygous. Both the correctly and the incorrectly inferred hetero-
zygous SNPs were subsequently tested for allelic imbalance.

We found the coverage per SNP in the analyzed RNA-seq data
to be highly skewed, following an almost exponential-like
distribution (Fig. 2). Nearly half (49.3%) of the heterozygous
SNPs had at most 10 reads and 75.5% had at most 20 reads.
Thus, the vast majority of SNPs were characterised by compara-
tively low coverage.

Because the true level of allelic imbalance was unknown for the
HapMap RNA-seq data, their analysis cannot serve as a gold
standard for assessing the power of an allelic imbalance test.
This notwithstanding, the likelihood ratio test classified a sub-
stantially higher proportion of SNPs with auxiliary genotype
information as showing allelic imbalance than the chi-square
test, in particular, for small coverage of up to 20 reads (Fig. 3,
continuous line). Upon closer inspection, this excess was also
found to be due partially to the limited number of different

Table 3. Area Under Curve (AUC) for the Inference of Allelic Imbalance Using Either a Likelihood-Ratio Test or, in Parentheses, a
Chi-square Test

Sequencing coverage

Allelic imbalance 5� 10� 20� 50� 100�

50:50 0.508 (0.308) 0.481 (0.419) 0.494 (0.446) 0.497 (0.464) 0.500 (0.476)

60:40 0.526 (0.323) 0.541 (0.481) 0.607 (0.564) 0.732 (0.711) 0.856 (0.847)

70:30 0.573 (0.363) 0.683 (0.627) 0.824 (0.796) 0.962 (0.957) 0.996 (0.996)

80:20 0.647 (0.424) 0.833 (0.789) 0.957 (0.947) 0.999 (0.998) 1.000 (1.000)

90:10 0.738 (0.500) 0.941 (0.904) 0.995 (0.992) 1.000 (1.000) 1.000 (1.000)

95:5 0.785 (0.540) 0.973 (0.939) 0.999 (0.998) 1.000 (1.000) 1.000 (1.000)

The analysis was based upon variable subsets of the original 125,000 simulated substitutions; each subset comprised only those substitutions for which the heterozygous
genotype was inferred correctly.

Table 4. Power of Two Statistical Tests to Detect Allelic Imbalance at the 5% Significance Level and, in Parentheses, after
Bonferroni Correction for the Number of Substitutions Analyzed

Sequencing Coverage

5� 10� 20� 50� 100�

Allelic imbalance LRT Chi-square test LRT Chi-square test LRT Chi-square test LRT Chi-square test LRT Chi-square test

50:50 0.000 (0.000) 0.000 (0.000) 0.099 (0.000) 0.011 (0.000) 0.042 (0.000) 0.042 (0.000) 0.063 (0.000) 0.063 (0.000) 0.055 (0.000) 0.055 (0.000)

60:40 0.000 (0.000) 0.000 (0.000) 0.162 (0.000) 0.027 (0.000) 0.125 (0.000) 0.125 (0.000) 0.329 (0.000) 0.329 (0.000) 0.538 (0.001) 0.537 (0.001)

70:30 0.000 (0.000) 0.000 (0.000) 0.333 (0.000) 0.084 (0.000) 0.407 (0.000) 0.407 (0.000) 0.856 (0.007) 0.856 (0.007) 0.987 (0.156) 0.987 (0.113)

80:20 0.000 (0.000) 0.000 (0.000) 0.590 (0.000) 0.216 (0.000) 0.777 (0.000) 0.777 (0.000) 0.997 (0.167) 0.997 (0.160) 1.000 (0.907) 1.000 (0.866)

90:10 0.000 (0.000) 0.000 (0.000) 0.859 (0.000) 0.485 (0.000) 0.977 (0.000) 0.977 (0.000) 1.000 (0.882) 1.000 (0.760) 1.000 (1.000) 1.000 (1.000)

95:5 0.000 (0.000) 0.000 (0.000) 0.957 (0.000) 0.697 (0.000) 0.998 (0.000) 0.998 (0.000) 1.000 (0.998) 1.000 (0.992) 1.000 (1.000) 1.000 (1.000)

Estimates were based upon 125,000 simulated substitutions; only substitutions with a correctly inferred heterozygous genotype were considered. LRT, likelihood ratio test.
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p-values that are technically possible with a chi-square test.
If auxiliary genotype information is not available and the nuclear
genotype has to be inferred from the allelic transcripts instead,
both tests have decreased power to detect imbalance (Fig. 3,
dashed line), also reinforcing the notion that extreme allelic
imbalance is indistinguishable from homozygosity. However, for

up to 20-fold coverage, the likelihood ratio test would again confer
a substantial power gain compared to the chi-square test.

Discussion

Transcriptome sequencing (RNA-seq) allows the detection of
splice variants and the assessment of allelic imbalance in a single
experiment. We proposed a coherent statistical framework for the
analysis of RNA-seq data that does not only address extreme (near
all-or-nothing) allelic imbalance, but that also provides sufficient
power to detect moderate and even weak allelic imbalance if
sufficient sequencing coverage is provided. Most importantly, our
method allows for calling errors, thereby being more realistic than
other approaches about the idiosyncrasies of real sequencing data,
including technology- and species-specific error signatures.
Moreover, by explicitly taking the different probabilities of
different allele miscalls into account, the proposed likelihood
ratio test for allelic imbalance may provide substantially more
power than a simplistic chi-square test that ignores such
information. Our framework can easily be adapted to different
sequencing platforms, genome compositions and other factors
that might impact upon the output of RNA-seq experiments.
Furthermore, in the course of defining and evaluating our
proposed likelihood ratio test, we derived empirical estimates of
the conditional miscalling probabilities of such experiments that
corresponded well to earlier observations, and that likely reflect
the signature of DNA polymerase infidelities [Dohm et al., 2008].

The statistical framework presented herein can also be applied to
infer the unknown nuclear genotype underlying error-prone RNA-
seq data as long as allelic imbalance is at most moderate (up to a
ratio of 80:20). This means that it would still be possible to analyze
allelic imbalance even if prior information about nuclear genotypes
is lacking or difficult to obtain. The resolution of allelic imbalance
achievable in such instances roughly coincides with that resulting
from a restriction of the analysis to variants with a minor allelic
transcript frequency 415% [Heap et al., 2010]. Potential applica-
tions of RNA-based nuclear genotype inference include the profiling
of somatic cells, particularly in cancer, which often show an
accumulation of somatic mutations [Pleasance et al., 2010].
It should be noted, however, that extreme allelic imbalance is
inherently indistinguishable from homozygosity if nuclear genotype
information is missing. Moreover, RNA editing may hamper the
inference of nuclear genotypes from RNA-seq data even further.
Another point of concern may be the fact that, because the prior
probability of a given genotype depends upon many factors
including the species and population under study, the genomic
region of interest, etc., we chose to assign equal prior probabilities
to all possible genotypes in our simulations and subsequent
analyses. If the true underlying distribution is substantially skewed
in a given research context, this could, of course, be accounted for in
more specific evaluations outside the scope of our manuscript.
Furthermore, at least as regards power considerations, the effects of
a certain genotype being rare and therefore inferred incorrectly
more often than others owing to equal priors are likely to average
out. Finally, we are, of course, aware that alternative algorithms have
been proposed to infer genotypes from sequence reads using, for
example, probabilistic graphical models and a binomial distribution
[Goya et al., 2010]. However, because our main focus was the
assessment of allelic imbalance, not genotype inference, we refrained
from comparing our framework with these other methods.

Our simulations clearly demonstrated that, once the underlying
nuclear genotype is known, the proposed likelihood ratio test has high
power to detect strong allelic imbalance even at moderate coverage,
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Figure 2. Distribution of the coverage level per SNP in the RNA-
seq data from HapMap [Montgomery et al., 2010]. The range of
coverage levels was restricted to 5 to 100 reads. Hatched bars:
heterozygous SNPs according to HapMap [Montgomery et al., 2010];
crosshatched bars: heterozygous SNPs that were inferred correctly
by the proposed genotype inference approach. For details, see text.
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Figure 3. Proportion of heterozygous SNPs in the RNA-seq data
from HapMap [Montgomery et al., 2010] that were found to show
significant allelic imbalance by the likelihood ratio test (thick line) or
the chi-square test (thin line). The analysis was confined to SNPs with
fivefold to 10-fold coverage. Dashed lines refer to the subset of SNPs
for which the genotype was inferred correctly by the proposed
genotype inference approach. SNPs were grouped according to
coverage into bins of size 10.
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and is still well powered to detect moderate imbalance if higher
coverage is provided. The expected level of allelic imbalance should
therefore determine the envisaged sequencing coverage of RNA-seq
experiments. If Bonferroni correction for multiple testing is deemed
necessary, for example, in genome-wide experiments, then at least
100-fold coverage seems mandatory for detecting allelic imbalance
weaker than 90:10. Particularly at low coverage or when Bonferroni
correction is applied, the proposed likelihood ratio test provides
substantially more power to detect allelic imbalance than a chi-square
test that ignores miscalling altogether. This power gain became even
more evident with ‘‘noisy’’ RNA-seq data that would result from an
increased allele miscalling probability. The observed drop in power of
both tests to detect allelic imbalance when the nuclear genotype has to
be inferred first is not surprising because only variants that were
balanced enough to be called heterozygous were tested in the
validation stage. Finally, although our simulations revealed a minor
inflation of the type I error for both tests, especially at high coverage,
we wish to emphasize that this lack of conservativeness should be of
minor practical relevance. Testing for allelic imbalance will most often
serve the purpose of (biological) hypothesis generation so that a
higher type II error rate, as has been noted for the chi-square test at
low coverage, would be of much greater concern.

If both genotype inference and allelic imbalance assessment are to
be performed on the same data set, our method will work best for
moderate to strong imbalance (70:30 to 80:20) with at least
moderate coverage (50-fold or more). However, many research and
clinical applications of transcriptome sequencing will be limited in
coverage and will rarely exceed 20-fold. In view of the coverage
distribution seen in the whole-transcriptome data from HapMap
individuals analyzed here [Montgomery et al., 2010], and given the
high costs still arising from high-throughput sequencing, low
coverage is therefore likely to be the rule rather than the exception
for the majority of variants investigated in RNA-seq studies in the
foreseeable future. Although such studies will generally have only
little power to detect moderate imbalance (up to 70:30), it is exactly
this type of data for which our statistical approach provides
reasonable power to detect higher levels of allelic imbalance.

In summary, we presented a likelihood-based statistical frame-
work that takes allele miscalls into account and that allows the
joint detection of somatic variants and imbalanced allelic
expression. In providing a means, for example, to rank somatic
mutations according to their likely functional relevance, we
therefore expect our approach to be especially useful in RNA-seq
studies of human cancer.
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