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ABSTRACT

Many comparative genomics studies aim to find the
genetic basis of species-specific phenotypic traits.
A prevailing strategy is to search genome-wide for
genes that evolved under positive selection based
on the non-synonymous to synonymous substitu-
tion ratio. However, incongruent results largely due
to high false positive rates indicate the need for
standardization of quality criteria and software tools.
Main challenges are the ortholog and isoform as-
signment, the high sensitivity of the statistical mod-
els to alignment errors and the imperative to par-
allelize large parts of the software. We developed
the software tool PosiGene that (i) detects positively
selected genes (PSGs) on genome-scale, (ii) allows
analysis of specific evolutionary branches, (iii) can
be used in arbitrary species contexts and (iv) of-
fers visualization of the results for further manual
validation and biological interpretation. We exem-
plify PosiGene’s performance using simulated and
real data. In the simulated data approach, we de-
termined a false positive rate <1%. With real data,
we found that 68.4% of the PSGs detected by Posi-
Gene, were shared by at least one previous study
that used the same set of species. PosiGene is a
user-friendly, reliable tool for reproducible genome-
wide identification of PSGs and freely available at
https://github.com/gengit/PosiGene.

INTRODUCTION

‘What is the genetic basis of phenotypic differences be-
tween species?’ is a recurring question in comparative ge-
nomics. A frequently used method is to search for genes
that evolved under positive selection. Positive selection de-
scribes the phenomenon that beneficial gene variants be-
come fixed in a population/species over time because they
increase fitness. It is a major evolutionary mechanism that
leads to fixation of innovation and adaptation to changing

environmental conditions (1,2). Most commonly, the � ra-
tio (the non-synonymous to synonymous substitution rate
ratio, also known as dN/dS or Ka/Ks) is used as a sign for
positive selection on protein-coding genes.

Systematic scans for positively selected genes (PSGs)
have provided insights into adaptation processes. For ex-
ample, PSGs were identified for many well known bacte-
rial pathogens that have immune related counterparts on
the mammalian side (3–7). A similar ‘arms race’ can be
found between venomous animals and their predators or
preys (8,9). Genome-scale searches linked PSGs to pheno-
typic traits like subterranean life and longevity of mole-rats
(10–12), the ability of Tibetan antelopes to live in high al-
titudes with low oxygen-concentration (13) and increased
mitochondrial efficiency leading to lower ROS-levels in ants
as potential prerequisite for their remarkable long lifespan
(14). Moreover, a significant role of positive selection on
neuronal-expressed genes in the evolution of the human ner-
vous system was illustrated (15).

Despite important insights gained by many genome-wide
works, re-evaluation studies have stated false-positive rates
of predicted PSGs between 45 and 90% (16–19). As the re-
spective original studies are based on locally developed and
implemented computational tools, this led to heterogeneous
quality standards, absence of reproducibility and eventu-
ally, to incongruent results (10,16,20).

There is a lack of a general software solution that of-
fers automated and reliable analysis of genome-scale data.
Several challenges are contributing to this situation. First,
such a software solution must be applicable in a general
way, which means that an ortholog assignment approach
is required that allows arbitrary species sets to be used and
consequently, arbitrary evolutionary branches to be tested.
Second, the management of alternative splice variants is
an important aspect in a eukaryotic context. Since the ma-
jority of eukaryotic genes are expressed as multiple tran-
scripts it is necessary to select representative isoforms for
further downstream analyzes. Choosing the longest isoform
or picking at random can be a substantial source of false
positives, because these approaches increase the chance of
misalignments due to the inclusion of non-homologous re-
gions, such as those derived from species-specific exons. In-

*To whom correspondence should be addressed. Tel: +49 3641 656050; Fax: +49 3641 656255; Email: arne.sahm@leibniz-fli.de
Present address: Arne Sahm, Genome Analysis, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Thuringia, 07745, Germany.

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded from https://academic.oup.com/nar/article-abstract/45/11/e100/3071713/PosiGene-automated-and-easy-to-use-pipeline-for
by guest
on 16 October 2017

https://github.com/gengit/PosiGene


e100 Nucleic Acids Research, 2017, Vol. 45, No. 11 PAGE 2 OF 11

Table 1. Features of existing software in the field of PSG identification

stead, isoforms should be chosen that are likely to be sim-
ilar from a functional and evolutionary perspective – but
also in a reasonable amount of time (21). Third, evolution-
ary codon models as the backbone of PSG identification
are highly sensitive to bad quality of input data. Errors can
originate from sequencing, assembly and gene annotation
as well as pseudogenes that were not recognized as those.
Furthermore, errors can occur during the different steps of
the genome-wide PSG search itself, e.g., if gene fragments
or poorly conserved sequences are assigned to an ortholog
group. Another source of errors lies in applying the statis-
tical models on alignments showing non-conserved regions
that cannot be resolved without ambiguity. All these prob-
lems can lead to alignments of non-homologous codons re-
sulting in a statistical signal that is misinterpreted as posi-
tive selection. On genome scale even low rates of false sig-
nals can outnumber the true candidates (16–18). This is
why strict quality-filtering strategies are necessary to en-
sure reliable results (16,19). Fourth, it is imperative to effi-
ciently parallelize large parts of the software, because most
of the steps it has to conduct, like ortholog assignment,
high quality multiple sequence alignment (MSA) and ap-
plication of codon substitution models, have considerable
computational costs. Execution of such steps on a single
processor for thousands of genes is not practicable within
a reasonable amount of time (22).

Genome-scale PSG searches require considerable experi-
ence in bioinformatics. To simplify the PSG search several
attempts have been made over the recent years (Table 1).
The tools Datamonkey (23), Selecton (24) and JCoDA (25)
were developed to simplify the procedures for single-gene
studies in particular steps: alignment of orthologous se-
quences, computation of the phylogenetic tree and/or con-
figuration of tools that implement codon substitution mod-
els. IDEA (26) is a graphical program that allows to ana-
lyze multiple genes in parallel but requires pre-aligned se-
quence data and virtually lacks a filtering procedure or data
quality control to ensure plausibility of the predicted can-
didates. PhyleasProg (27) and PSP (28) are able to perform

all necessary steps for genome-wide PSG identification but
are restricted to fix sets of few vertebrate species or bac-
teria strains, respectively. The recently developed end-to-
end pipeline POTION (29) meets most of the requirements.
However, it does not offer a solution for branch-specific
PSG search, which is the common application scenario be-
cause it allows to link identified PSGs to phenotypic traits
(1,10,14,15,30–35).

Toward user-friendly, reliable tools for reproducible
genome-wide identification we developed PosiGene that ad-
dresses all the above mentioned challenges and performs
the complex analysis automatically. In addition, PosiGene
offers alignment visualization, in which positively selected
protein sites and functional domains are highlighted. We
validated PosiGene on simulated data using sequences with
known features of positive selection and on real data com-
paring its results against those of five high-ranking publica-
tions on positive selection along the human lineage.

MATERIALS AND METHODS

Structure and workflow of the PosiGene pipeline

Overview. The minimal required input comprises coding
sequences – in FASTA or GENBANK format – for all
species to be analyzed. The output consists of a table show-
ing all genes (including those that are not significant) ranked
by their probability to be under positive selection and in-
cludes information about positively selected sites, dN/dS ra-
tios as well as links to alignment visualizations.

A user manual (https://github.com/gengit/PosiGene/
blob/master/doc/User Guide.pdf) provides detailed in-
formation about all possible parameters that can be used
to customize PosiGene. The software is divided in three
consecutive modules: the first module (M1) builds the
ortholog catalog, i.e. the genome-wide set of ortholog
assignments, based on the user-defined set of species and
sequences. The second module (M2) constructs alignments
and derives a phylogenetic species tree. The third module
(M3) scans genes for positive selection along a user-chosen
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branch of the species tree. PosiGene can be called in a way
that all modules are executed consecutively or to run a
single module separately. The latter feature can be used to
add a species to the ortholog catalog, change parameters
or to search another branch for PSGs without having to
rerun the whole pipeline (Figure 1).

PosiGene is implemented in Perl and uses different Biop-
erl (36) modules for reading and writing sequence, tree as
well as alignment files. All modules – except the Homolo-
Gene based ortholog assignment at the beginning of M1
(see below), which stresses Input/Output – are heavily par-
allelized. Threads are created once at the beginning of each
submodule (Figure 1) and are reused efficiently for new
tasks by the main thread via queues. This avoids extra or
inhomogeneous computational load caused by thread ad-
ministration.

All arguments used by PosiGene to call incorporated
third party programs are listed in Supplementary Table S1.

M1: building the ortholog catalog. The assignment of
genes to ortholog groups is the basis of later analyses. We
have implemented a mixture of core species with already es-
tablished ortholog relations and automated orthology pre-
diction for any user-supplied species’ data. This ensures re-
liability as well as flexibility of the ortholog assignment sys-
tem.

Ortholog groups are determined, in a first approach,
based on the HomoloGene database (37). The local Ho-
moloGene copy is contained in the program package
and currently contains 21 species covering a wide evolu-
tionary range (http://www.ncbi.nlm.nih.gov/homologene/
statistics/). Sequences of species that are not part of Ho-
moloGene are assigned to the initial ortholog groups by a
best-bidirectional BLAST hit criterion (38,39), which was
adapted to resolve multiple isoforms per gene, using group-
to-group instead of sequence-to-sequence assignment. We
define group-to-group assignment such that a gene X of a
species that is not part of HomoloGene is assigned to a ho-
mology group Y, as defined by HomoloGene, if and only
if the best hit across all isoforms of X is within Y and vice
versa. The best-bidirectional hit criterion was shown to per-
form well in comparison with other ortholog assignment
methods, irrespective of phylogenetic distance (40).

The module M1 is skipped if the user provides ortholog
assignments of the sequences.

M2: alignments and phylogeny. The first step in this mod-
ule is a similarity-based sequence selection to ensure that,
per subsequently conducted positive selection test, there
will be only one transcript isoform per species. There-
fore, to each isoform of an ‘anchor species’ the most sim-
ilar isoform of each other species is assigned. The anchor
species of a PosiGene run is chosen by the user and could
be, as a recommendation, the best annotated species with
the most complete set of coding sequences or a species
whose lineage shall be tested subsequently for positive se-
lection. The isoforms that are most similar to the anchor
species’ sequences are determined via an initial MSA on
protein level calculated by CLUSTALW. For this all pos-
sible isoforms from each species in an ortholog group are
used. In comparison to pure pairwise alignments, the pro-

gressive nature of CLUSTALW, which aligns more simi-
lar sequences first, decreases the chance of aligning non-
homologous regions, such as alternative exons. In compar-
ison to the subsequently used PRANK, the widely used
aligner CLUSTALW is much faster and thus, be able to pro-
duce results on large, i.e. many sequence containing, MSAs
in a feasible amount of time (41). This is important be-
cause many genes are spliced into multiple isoforms. Finally,
there are as many isoform assignments per ortholog group
as there are isoforms in the anchor species. Generally, all
following procedures, including M3, will be applied to the
obtained isoform assignments.

Next, highly divergent sequences are removed from the
isoform assignments. Each non-anchor species sequence
whose similarity with the anchor species sequence does
not reach a threshold will be removed. Furthermore, in
order to guarantee an adequate level of conservation be-
tween the non-anchor species sequences, each of them is
required to fulfill a second similarity threshold, in respect
to all other non-anchor species sequences. The latter rule is
implemented by iteratively removing sequences, beginning
with the sequence that violates the rule most often. If mul-
tiple sequences violate the rule with equal frequency, the se-
quence that has the lowest similarity to the anchor species
sequence is removed first.

For subsequent analysis steps, a phylogenetic tree is
needed. The user can either provide a species tree, or it
will be computed from the previously calculated isoform
assignments using the parsimony method of the PHYLIP
package (42) and jackknifing. Briefly, for this step, those
isoform assignments are used that contain, after aforemen-
tioned sequence filtering, still all species that were specified
by the user at the beginning. The aligned isoform assign-
ments are concatenated and then cut in chunks of equal
length. Each chunk is filtered with GBLOCKS (43) to re-
move gaps and unreliable alignment columns, following a
tree reconstruction based on the filtered chunks with DNA-
PARS of the PHYLIP package. Dnapars carries out un-
rooted parsimony (44) and uses the method of (45) to cal-
culate branch lengths. From these trees a consensus tree
is calculated with CONSENSE of the same package and
unrooted afterward. Since CONSENSE does not predict
consensus branch lengths, we calculate the average branch
length for every node of the consensus tree over all nodes of
the chunk trees that are equivalents of the respective con-
sensus tree node.

All isoform assignments that comprise at least three se-
quences (which means also three species) are aligned now
on codon level using PRANK (46). The choice of the align-
ment software has a large impact on the result of PSG iden-
tification (18,47). PRANK produces the most reliable can-
didates in this context, as was found on simulated as well as
real data (18,19,48,49). As guide tree the species tree is used
(see above).

M3: positive selection and filtering. To identify genes un-
der positive selection on specific evolutionary branches, we
use the PAML package (50,51). PAML is widely used as a
framework to test phylogenetic hypotheses by using maxi-
mum likelihood based on estimation of the � ratio. Specifi-
cally, we use the CODEML program of the PAML package
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Figure 1. Workflow diagram of PosiGene.

to conduct the branch-site test of positive selection on each
PRANK MSA (52,53). Briefly, this test is conducted by cal-
culating and comparing the likelihoods of a null model, un-
der which all sites may evolve under neutral or negative se-
lection and an alternative model, under which the sites of
the targeted branch are additionally allowed to evolve under
positive selection. The P-value for the likelihood ratio test is
calculated via a � 2 distribution with one degree of freedom.
Besides a PRANK alignment, CODEML is supplied with a
phylogenetic tree reduced to the species that are represented
in the respective MSA, if necessary. Simulations have shown
that the branch-site test has good accuracy and statistical
power. However, it is sensitive to alignment as well as se-
quence errors and tends to produce more false negatives in
scenarios of few, very similar or very short sequences due to

low information content (54,55). Besides nominal P-values
PosiGene results provide correction for multiple testing us-
ing the Bonferroni and Benjamini–Hochberg methods. Spe-
cific sites under positive selection are inferred by the Bayes
emiprical Bayes method (56) implemented in CODEML.

As part of the PosiGene workflow, we paid special at-
tention to minimize potential false positive PSGs by im-
plementing a series of filtering steps (Figure 2). First, gaps
and surrounding unconserved alignment columns are strin-
gently removed with GBLOCKS (43) from the PRANK
MSAs. A filtering of questionable alignment columns is nec-
essary, because alignment of non-homologous codons is a
major source of false positives (16). Second, as was men-
tioned, sequences failing pairwise similarity thresholds are
deleted from alignments early in the workflow. MSAs con-
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Figure 2. Schematic illustration of the filtering in PosiGene. Three approaches that are conducted at different steps of the program are depicted. The red
marked ‘X’ means that the respective sequence/species, alignment column or the whole alignment/result were removed from further analysis, while the
green marked

√
means that the filter was passed. The shown examples are artificial and serve for demonstration only. In particular, for Example 3, the

minimum length for a block of accepted alignment columns is depicted shorter (one codon/amino-acid) than in real application. The reason why the
alignment in Example 3 does not pass the filter would be that a too small fraction of the alignment passed the column filter. For compact illustration, all
steps are shown on protein level, while the column filtering works in reality on codon level.

taining those sequences are likely to have many disordered
regions, promoting the alignment of non-homologous
codons. This filtering step can also be seen as an instrument
to reduce false negatives. Few badly conserved sequences
can force the first mentioned filter to delete large parts of
the MSA reducing the power of the test and potentially re-
moving positively selected sites. Third, entire MSAs can be
discarded if they are considered unreliable for the following
reasons, if: (i) a small absolute number or a small percentage
of alignment columns or anchor species codons remain af-
ter the first filtering step, (ii) few sequences remain after the
second filtering step, (iii) disproportional dN/dS ratios (e.g.
≥100 in foreground branch) were calculated by CODEML
or (iv) an implausibly high fraction of positively selected
sites was inferred. Additionally, MSAs will only be consid-
ered if at least one species from the sister taxon (i.e. the most
closely-related species/clade) of the examined branch is rep-
resented in it. Without this condition it is not possible to say
whether potentially observed selective pressure worked on
the branch of interest or before in evolution (57).

The alignment visualization component processes four
kinds of information: the MSA itself, the probability for
each site to be under positive selection, which parts of the
MSA were removed by GBLOCKS and thus could not be
analyzed, as well as functional domains that are potentially
listed in the GENBANK file of the anchor species. The in-
formation is depicted in two ways: first, as Portable Net-
work Graphics (PNG) in different display formats based on
Bioperl and the GD Graphics library; second, as a file type
that is interpretable by Jalview (58). Jalview is a free Java
based program for MSA visualization that is delivered with
the PosiGene package and integrated insofar as PosiGene’s
Jalview visualizations can be opened with one simple com-

mand. Jalview also allows the user to edit the alignment,
e.g., by adding further annotations.

Validation methods

Valdiation on simulated data. First, we tested PosiGene
based on simulated coding sequences that were generated
with INDELible (59). Note, that the branch-site tests eval-
uates, for a given coding sequence, whether the assumption
that a proportion of codons is target to positive selection
on the tested branch fits the data significantly better than
the assumption that all its codons evolved under neutral or
purifying selection. Selective pressure is represented by the
� ratio and � > 1 indicates positive selection.

In order to assess the false positive rate we simulated the
evolution of 1000 coding sequences by a selection scheme
N without sites under positive selection. In scheme N, the
sitewise selective pressure was set to a discrete distribution
that was previously estimated based on 6.05 million codons
in 12 871 gene trees comprising 29 mammals (60). How-
ever, we replaced the 0.99–1.0 quantile (the only one with
� > 1) with the weighted average of all other quantiles
� = 0.21222 (Supplementary Table S2). Indels were mod-
eled with a geometric length distribution with parameter q
= 1−p = 0.35 resulting in a mean and standard deviation
of 1.54 respectively 0.91 codons. This distribution, devel-
oped in a similar simulation study (48), adequately fits pub-
lished data on coding sequences of mammalian genomes
(61,62). We used a ratio of substitution to indels of 43 as
it was found in coding regions of primates (62). The ratio
of transition to transversion substitutions, �, was fixed at
2 and the stationary codon frequency of �-globin from our
real data validation was used. For a realistic test scenario
the sequences were evolved along the phylogenetic tree of
the real data validation. However, the branch lengths had
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to be multiplied with three in order to conform with a dif-
ferent concept of branch lengths used by INDELible. We
verified that the branch lengths that were predicted by Posi-
Gene on the simulated datasets match those of the original
tree. All branches of the tree were simulated to evolve un-
der selection scheme N (Supplementary Table S2). The root
sequence length was set to 400. Finally, we configured Posi-
Gene to search separately on one internal as well as on a
terminal branch of the tree for PSGs to test the program
for both possibilities. The tested terminal branch was the
one that corresponds with the human branch in the real
data validation (see Figure 3) and the internal branch cor-
responds with the last common ancestor of human, chimp
and gorilla (GHC). Of note, both tested branches were sim-
ulated (as all others) to evolve under selection scheme N, i.e.
without positive selection.

In order to assess sensitivity we used in principle the
same simulation model with the modification that the two
tested branches now were evolved under selection schemes
A–E. The other branches were still simulated under selec-
tion scheme N as before. The schemes A–E differ from N in-
sofar as a proportion of sites with � > 1 was added. The sig-
nal for positive selection was concentrated on 1, 3, 5, 7 and
9% of the codons for the schemes A–E, respectively (Supple-
mentary Table S2). Its strength was adjusted to fit an overall
average � of 0.9 - indicating still for a moderate purifying se-
lection over the whole sequence. For each scheme A–E and
for each of the both tested branches again 1000 sequences
were generated.

Validation on real data. To determine the congruency
among the five human studies as well as POTION and Posi-
Gene results, we converted all candidate IDs to Ensembl
human gene IDs. Due to historical reasons, multiple En-
sembl gene IDs can refer to the same gene. Therefore we
performed a last translation step and took the Ensembl gene
names as objects of comparison. In congruency with most
of the regarded studies (15,30,34,35) we defined candidates
by having passed the filters of the respective work and nom-
inal P-values equal or below 0.05 based on the branch-site
test of positive selection. For ID conversion (Supplemen-
tary Table S3) we used Ensembl Biomart (63), except for the
conversion of UCSC transcript IDs used by (1) to RefSeq
transcript IDs for which we used the UCSC Table Browser
(64). Additionally, for the OrthoMCL (65) cluster names
that are used in the POTION output we determined the hu-
man protein IDs within the respective cluster and used them
for further conversion. PosiGene were run on two different
species sets: one with four species and one with nine species.
Since there is no gold standard for PSGs, we define true can-
didates as being identified by at least two (respectively at
least three) of the examined studies. Thus, the precision of
a given study is defined as following:

precision = |{study candidates} ∩ {true candidates}|
|{study candidates}|

Benchmarking

For both PosiGene runs that were conducted in the frame
of the real data validation, i.e. the four-species as well as the

Figure 3. Species set used in real data validation. Shown is the phyloge-
netic tree that was calculated by PosiGene with the displayed species set.
Branch lengths are drawn in scale and additionally shown directly at the
branches. The respectively tested branches (both times human) are colored
red. The tree was furthermore used to generate simulated sequences. In
the simulation, the branches were tested that are equivalent to the red col-
ored branch (human) and the blue colored branch (last common ancestor
of GHC). In some of the simulation runs respectively one of these two
branches was simulated to be under a different selection scheme than all
other branches of the tree.

larger nine-species set, we measured how much total central
processing unit (CPU) time was consumed and how much
real time was needed to complete each of the three Posi-
Gene modules (Table 2). For the benchmarking, we used
a computer with 24 Intel Xeon processors of which each
had a clock rate of 2.5 GHz. The differences between CPU
time divided by the numbers of used processors and the
real time that was needed, have to be mostly attributed to
input/output operations on files. In the module M1 of the
four-species run there is even less CPU time needed than
real time due to the circumstance that all four-species were
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Table 2. Real and CPU time needed to run PosiGene on the real datasets analyzed in this work

4-species set 9-species set

Real time CPU time Real time CPU time

M1: building the ortholog catalog 1.8 h 1.1 h 17.1 h 305.3 h
M2: alignments and phylogeny 6.6 h 125.1 h 26.8 h 565.6 h
M3: positive selection and filtering 5.1 h 95.7 h 33.9 h 799.5 h∑

13.5 h 221.9 h 77.8 h 1670.4 h

Note: the table shows the real and CPU times consumed by two PosiGene runs that were executed on species sets of different sizes. A server with 24
processors was used for both runs.

part of the HomoloGene database and thus no BLAST
steps were performed (see M1: building the ortholog cat-
alog). PosiGene’s memory consumption is negligible.

RESULTS AND DISCUSSION

The newly developed end-to-end pipeline PosiGene is the
first bioinformatics tool for the detection of PSG that per-
forms the following analysis steps automatically: (i) deter-
mination of ortholog relationships between genes of differ-
ent species, (ii) calculation of coding sequence alignments,
(iii) reconstruction of a phylogenetic tree, (iv) filtering pro-
cedures for unreliable alignment data and implausible re-
sults as well as (v) the branch-site test of positive selection.
Each step is heavily parallelized to reduce running time.
PosiGene consists of three modules: M1 ortholog catalog
creation, M2 alignments and phylogeny, M3 positive selec-
tion (Figure 1). It offers alignment visualization, in which
positively selected protein sites and functional domains are
highlighted. This enables biologists to manually validate
and functionally interpret specific sites in individual can-
didates (Figure 4). Additionally, non-experts get an easy-
to-use tool with reliable default parameters, while experts
can configure the program to their needs and make use of
its modularization. The PosiGene pipeline was applied suc-
cessfully in several studies for genome-scale PSG identifica-
tion (57,66,67). PosiGene is designed to run on linux plat-
forms instantly without further installation and is available
at https://github.com/gengit/PosiGene.

To validate PosiGene’s performance we used simulated
and real data.

Validation on simulated data

First, we validated PosiGene on simulated coding se-
quences. The basic idea of this approach is to simulate the
evolution of protein-coding sequences with defined selec-
tion schemes along the branches of a phylogenetic tree. This
enabled us to create scenarios, in which PosiGene should
detect positive selection (scenarios A–E) and a scenario in
which it should not (scenario N). As tree we used the same
as in the real data approach (Figure 3) and tested, in each
scenario, the branches: (i) human, as a representative of a
terminal branch or (ii) the last common ancestor of gorilla,
human and chimp (GHC), as an internal branch (Table 3).

PosiGene results (p≤0.05) of scenario N indicate false
positive rates of 0.3 and 0.4% in the human and the GHC
branch, respectively. The true positive rates, determined in
scenarios A–E, lie between 5.4 and 30.7%, Supplementary
Figure S1 shows false and true positive rates depending on

how the P-value threshold is chosen. In order to assess Posi-
Gene’s false and true positive rates, we compared them with
values from previously published extensive simulation ex-
periments (48). In this study, Fletcher and Yang reported
for the branch-site test of positive selection false positive
rates without filtering between 2.1 and 13.0%. If, as only
filtering procedure, gaps were removed from the alignment
the false positive rates were between 2.4 and 10.2%. If align-
ment methods other than PRANK were used, the false pos-
itive rates were even higher. So, with a rate of 0.3–0.4%
PosiGene’s filtering of the alignments efficiently suppresses
false positives. This, however, raises the question of whether
our strict filtering procedures diminish PosiGene’s true pos-
itive rate? This would be the case if the filtering removes
true alignment signals. Since in simulations the ‘true align-
ments’ are known, Fletcher and Yang used these alignments
directly to assess the maximum true positive rate that can
technically be achieved using the branch-site test, and ob-
tained rates between 1.4 and 33.1% (48). The fact that Posi-
Gene’s true positive rates (5.4–30.7%) were within the upper
range of these estimates indicates that the negative impact of
its filtering procedures is low. In regard to the still relatively
high number of false negatives produced by the branch-site
test, it should be noted that the coding sequences were sim-
ulated with an overall average signal of moderate negative
selection and only a small fraction of codons were allowed
to evolve under positive selection.

Furthermore, we observe that PosiGene’s sensitivity is
positively correlated with the concentration of the signal of
positive selection (Pearson correlation; r2 = 0.89, P-value
0.04), i.e. PosiGene’s ability to detect positive selection in-
creases if few sites are affected by heavy selective pressure
(scenario A) and decreases if many sites are influenced by
weak selective pressure (scenarios B–E).

Validation on real data

While simulations offer the advantage of precise knowledge
about the selective pressures that influenced sequence evo-
lution, they may not cover the full range of problems that
occur in analysis of real genome-wide data, e.g. the exis-
tence of paralogs, which currently cannot be simulated as
above. However, since there is a lack of an independent val-
idation technique for real data PSG candidates, we could
not define a single study as a gold standard. Instead, we used
the agreement between different studies as an indication for
precision (positive predictive value) of predictions. Previous
works have pinpointed precision in favor of sensitivity as
major goal of PSG analysis on genome scale (16–18,20).
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Figure 4. PSG visualization by PosiGene. Shown is a subregion of the ANKRD35 alignment. Human residues identified to be under positive selection
(L311H, N317S) are colored with respect to physico-chemical properties using the Zappo code (http://www.jalview.org/help/html/colourSchemes/zappo.
html). The probability of each residue to be positively selected is indicated by a line below the alignment and displayed upon a mouse-over action. Below are
highlighted parts of the alignment that were used for the PSG test (green arrows) as well as experimentally supported protein domains based on an annotated
sequence file (red bars). The three plots for conservation, quality and consensus at the bottom represent column-wise measures for the conservation of the
physico-chemical properties of the amino-acids based on the Analysis of Multiply Aligned Sequences (AMAS) method (68), the likelihood of observing
the mutations based on the BLOSUM62 matrix (69) and the percentage of the modal residue, respectively.

Table 3. PosiGene’s performance on simulated gene trees

Scenario Codons under selection Tested branch Identified PSGs1 Description

N 0% Human 0.3% False positive rates
GHC2 0.4%

A 1% Human 30.3% True positive rates3

GHC 30.7%
B 3% Human 15.0%

GHC 15.0%
C 5% Human 8.6%

GHC 10.2%
D 7% Human 6.2%

GHC 7.4%
E 9% Human 5.4%

GHC 6.1%

1A PSG was defined by having a nominal P-value ≤ 0.05.
2GHC – last common ancestor of gorilla, human and chimp.
3The overall strength of positive selection was identical for scenarios A–E (� = 0.9) resulting in highest concentration of the selection pressure in scenario
A and lowest in E.

For the real data validation approach, human served as
a useful lineage because it has been analyzed multiple times
for PSGs on a genome wide scale. Therefore, we took the
PSG candidates from five human studies (1,15,31,33–35).
In addition, we compared PosiGene only to the recently de-
veloped end-to-end pipeline POTION due to the principal
limitations of other existing tools (Table 1). We ran PO-
TION with default settings and complete mRNA sequence
sets from human, chimp, mouse, rat, dog and maquaque as
input (Supplementary Table S4). This species set is reduced
in comparison to the set that was given to PosiGene due
to the limitations of the OrthoMCL-based ortholog assign-
ment system used by POTION, which restricts easy, semi-
automatic ortholog assignment to species that are present
in the OrthoMCL database (65). The species additionally
used for the PosiGene run were cattle, cat and gorilla (Fig-
ure 3). To test the effect of the size of the used species set,
an independent PosiGene run with only four species was

conducted: human, chimp, maquaque and mouse. The PSG
candidates of both PosiGene runs (Supplementary Tables
S5 and 6) were predicted with default settings and human
was set to be the tested species. Details about the examined
studies like used alignment software, species set and filtering
mechanisms are summarized in Supplementary Table S7.

We measured consensus on two levels: PSGs that were
found by at least one, respectively, two other studies (Ta-
ble 4, Supplementary Tables S8 and 9). The study of Clark
et al. (33) shows least consistency with the other works.
Since it is the earliest work, this could be explained by fewer
and less qualitative gene sequences, availability of only two
species for comparison to the tested human branch and use
of an older version of the branch-site test that was improved
subsequently (52,53). Also the POTION pipeline produced
small intersections with the other works. However, this per-
formance is hardly comparable because POTION uses site
tests, which check whether a gene was generally under pos-
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Table 4. Congruency of human PSG predictions across different studies with PosiGene nine-species result

Study Found PSGs Shared by at least one other study Shared by at least two other studies

Absolute Precision [%] Absolute Precision [%]

Clark, et al. (33) 525 22 4.2 9 1.7
Arbiza, et al. (35) 146 61 41.8 41 28.1
Bakewell, et al. (34) 138 88 63.8 56 40.6
Kosiol, et al. (1) 204 103 50.5 59 29.0
Gaya-Vidal and Alba (15) 190 65 34.2 43 22.7
POTION 123 8 6.5 5 4.1
PosiGene 98 67 68.4 47 48.0

itive selection during evolution, instead of the branch-site
tests performed by the other works. The scope of applica-
tion cases given with the presentation of POTION suggests
that the program’s default parameters, especially the filter-
ing parameters, were optimized for PSG analysis in bacte-
rial or less complex eukaryote genomes (29). Finally, we re-
mark that the works of Kosiol (1) and Bakewell (34) show
the best results in terms of sensitivity, that is, the absolute
number of predicted PSGs confirmed by other studies.

On both measured consensus levels, PosiGene has consis-
tently the highest precision, with more than two-third and
almost the half of genes that were found by at least one,
respectively, two other studies. This outperformance is not
explained by the size of the species set used for branch-site
analysis. A reduction of the species set from nine to four re-
sults in even a slightly increased precision, regarding PSGs
that are shared by at least one other study and only in a min-
imal drop of precision from 48.0 to 44.7%, regarding PSGs
that shared by at least two other studies (Supplementary Ta-
ble S10). While the reduction of the species set does not neg-
atively affect precision it does reduce sensitivity: the num-
ber of identified PSGs drops from 98 to 47. However, this
is expected due to the decreased power of the branch-site
test in alignments with fewer sequences (54). We acknowl-
edge that, within the comparison, PosiGene identifies the
fewest PSG candidates, potentially indicating a high false
negative rate. This could be attributed to the circumstance
that we laid our focus on precision instead of sensitivity, in
agreement with the literature (16–18,20). In respect to co-
supported candidates, however, only the Bakewell and Ko-
siol studies (1,34) identified more PSGs showing that Posi-
Gene’s sensitivity can compete with that of the other studies.
Of note, the fully automated pipeline of PosiGene is com-
pared against the primary results of high ranking studies,
which were able to use tailored data quality controls that
are difficult to implement in a generally applicable program.
For example, the Bakewell study, which has the highest pre-
cision besides of PosiGene, integrated the nucleotide qual-
ities of the chimpanzee genome as a main filtering mecha-
nism into their approach. Furthermore, the studies neither
had the aim nor provided tools to reproduce their approach.
Arbiza, Bakewell and Gaya-Vidal (15,34,35) also did not
provide the alignments which further hinders evaluation of
the results and follow-up studies. In contrast, PosiGene of-
fers the possibility of easy reproduction of results that were
predicted by others and provides alignment visualizations
to manually verify, biologically interpret and experimen-
tally examine PSGs and selected sites.

CONCLUSIONS

The identification of PSGs is a prevailing genomics ap-
proach that enabled insights into adaptation processes,
molecular function and the genetic source of species-
specific phenotypic traits. PosiGene can be used with a sin-
gle command line call to search for relevant candidates on a
user-chosen evolutionary branch and a genome-wide scale.
Besides a list of genes that are ranked according to the prob-
ability to be under positive selection, PosiGene generates
alignment visualizations which enable to contextually inter-
pret the positively selected amino acid sites within the re-
spective candidate.

We compared the functionality of PosiGene with other
tools that partly enable to search for PSGs on different
scales. We argue that none of them would be suited as a
broadly applicable tool for genome-wide searches that aim
to link phenotypic traits of a species or clade to its PSGs, be-
cause important aspects like filtering mechanisms, a freely
selectable species set or a branch-specific analysis are lack-
ing.

We demonstrated PosiGene’s performance in two com-
plementary validation strategies. One validation was based
on simulated data giving precise control over targets of pos-
itive selection. It was shown that PosiGene’s filter mecha-
nisms result in a very small false positive rate that is a frac-
tion of known values for unfiltered data. Since simulated
data may not cover the full range of possible problems, a
second validation on real data was performed. The results
demonstrated that PosiGene reaches a good overlap with
existing high-ranking studies on the human lineage, e.g.,
more than two-third of the PSGs that were identified by
PosiGene were also found by at least one human study.

Altogether, we provide PosiGene as step toward a user-
friendly tool for genome-wide identification of PSGs that
produces reliable results reproducible by others which can
be visualized for further manual validation and biological
interpretation.
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