Vol. 15 no. 12 1999
Pages 1012-1019

Post-processing long pairwise alignments

Zheng Zhang, Piotr Berman', Thomas Wiehe?:3 and Webb

Miller T:*

"Department of Computer Science and Engineering, The Pennsylvania State
University, University Park, PA 16802, USA and 2IMB Jena, Department of Genome
Analysis, PO. Box 100 813, D-07708 Jena, Germany

Received on February 12, 1999; revised on May 20, 1999; accepted on June 4, 1999

Abstract

Motivation: The local alignment problem for two se-
guences requires determining similar regions, one from
each segquence, and aligning those regions. For alignments
computed by dynamic programming, current approaches
for selecting similar regions may have potential flaws. For
instance, the criterion of Smith and Waterman can lead to
inclusion of an arbitrarily poor internal segment. Other
approaches can generate an alignment scoring less than
some of itsinternal segments.

Results: We devel op an algorithm that decomposes a long
alignment into sub-alignments that avoid these potential
imperfections. Our algorithm runsin time proportional to
the original alignment’s length. Practical applications to
alignments of genomic DNA sequences are described.
Availability: Softwareisavailableat http:// globin.cse.psu.
edu/

Contact: webb@cse.psu.edu

I ntroduction

Given an alignment scoring scheme, which assigns

approach to solve the local alignment problem.

This approach to local alignment has been quite popular,
in part because it is relatively straightforward to under-
stand precisely what is being computed. Alternative for-
mulations of the local alignment problem, e.g. by Sellers
(1984), have sometimes been more cumbersome. More-
over, the Smith—-Waterman results have a number of de-
sirable properties, including that of being ‘normal’, in the
sense that their score cannot be raised by shortening the
alignment at either end. The approach has been adopted
by many sequence alignment programs, including our own
software for genomic DNA sequences (e.g. Huahgl .,
1990; Chacet al., 1995).

An unfortunate property of the Smith—Waterman notion
of local similarity is that arbitrarily poor regions can be
included in a reported alignment, as illustrated in Figure 1.
This is one manifestation of the sensitivity of the output to
the choice of alignment scoring parameters (Vingron and
Waterman, 1994).

For a practical example of the problem, consider the
yse of alignment scores that, in our experience, usually

score to each possible combination of aligned sequend¥©Vide reasonable alignments of orthologous sequences
entries and to each gap, a highest scoring alignment ¢fom humans and mice. However, on occasion, long non-

two given sequences can be computed by a dynami@atching regions in both intergenic and intragenic parts of

programming approach (Needleman and Wunsch, 19705he genomic sequences can be included in the alignment,

It is less obvious how one should determine a ‘best@S shown in Figure 2. Similar proble.ms arise if those
alignment that can ignore ends of either sequence (a s§@Me scores are used when comparing sequences from
called ‘local’ alignment), since in effect one must pick a €:9- C- €legans and C. briggsae, which have a much
region of each sequence and then align the chosen regiorfdgher density of coding DNA and shorter introns than
The approach of Smith and Waterman (1981) is to find &0 mammals, or when comparing sequences from two
highest scoring alignment of arbitrary regions of the two
sequences, which can be done with a simple modificatiorSequence ;
of the end-to-end alignment algorithm. When used with ar
alignment scoring scheme under which the average scoiSequence 2
of arandom alignment is negative, the method provides an

*To whom correspondence should be addressed. Fig. 1. Inclusion of an arbitrarily poor region in an alignment. If
3Current address: Max Planck Institute for Chemical Ecology, Departmeng region of score-X is sandwiched between two regions scoring
of Molecular Genetics and Evolution, Tatzendpromenade 1a, 07745 Jenapore thanX, the Smith—Waterman approach will join the three
Germany. regions into a single alignment, regardless of how I&%ge.

1012 © Oxford University Press 1999

Post-processing long pairwise alignments

HUMAN

IRAK 4 3 MECE2 2.1 RCP

- G983]

Rsvp

, - 60000

—_ P 40000

MOUSE
2

4 20000

Mecp2

3

4

Hlrak
-
N

HUMAN

IRAK 4 3 MECP2 2 1 RCP

- (9831

Rsvp

) + ¢ e

MOUSE

f~ 20000

4

: Y T
i 20000 40000 0000 %0320

Mrak

Fig. 2. Dotplot summaries of two sets of alignments of human and mouse genomic sequences (GenBank Acc. Nos AF030876, 247046,
Z47066 and 268193 for human and AF121351 mouse). In both genomic sequences, repetitive elements were found (RepeatMasker with
default settings; http://ftp.genome.washington.edu/RM/RepeatM asker.html) and removed from the sequences. The sequences contain three
homologous genes. For clarity, only the gene structures for MECP2 and Mecp2, as determined by K. Reichwald et al. (submitted for
publication), are indicated by black (CDS) and dark grey (UTR) boxes and exon numbers. The alignments on the left were computed by
a program caled SIM (http://globin.cse.psu.edu) that uses the Smith—-Waterman notion of a local aignment. The longest local alignment
(human positions 6817-53 081) joins highly conserved regions together using regions that are not conserved. Note especially the intergenic
region between IRAK and MECP2 and intron 2 of MECP2, which are indicated by the interior grey boxes. The alignments on the right were
determined by post- processing the aignments on the left, using the method described in this paper. Parameter settings were: +1 (match),

—1 (mismatch), —6 — 0.2k (penalty for a gap of length k) and X = 100.

mammalian species that diverged more recently than the
mammalian radiation, e.g. human and monkey sequences.

A recent alternative formulation of the local alignment
problem avoids alignments having arbitrarily poor re-
gions. An X-drop within an alignment, where X > 0
is fixed in advance, is a region of consecutive columns
scoring less than —X. The idea, then, is to consider
only alignments that contain no X-drop, which we call
X-alignments.

A number of theoretical results about X-alignments are
proved by Zhang et al. (1998b). For the current discussion,
the relevant observation is that optimal X-alignments are
expensive to compute, so in practice some heuristic (i.e.
approximation algorithm without a rigorous guarantee of
solution quality) is employed. Altschul et al. (1997) and
Zhang et al. (1998a) describe programs for searching
protein sequence databases that use such methods.

These programstypically work by locating astatistically
significant, gap-free local alignment (Altschul et al.,
1990), sometimes called a high scoring segment pair,
abbreviated HSP. The alignment is extended in both
directions, as described by Altschul et al. (1997). The
portions of the alignment on either side of the extension
point are guaranteed to be X-alignments, but the full
alignment can only be guaranteed to be a 2X-alignment

(see Figure 3). Moreover, in cases where X exceeds the
score necessary for statistical significance of an HSP, a
computed alignment might be non-normal, in the sense
that removing columns from one end raises its score (see
Figure 4 for an example of this phenomenon).

This paper devel ops techniques for decomposing along
alignment into sub-alignments that avoid both problems,
i.e. the sub-alignments are free of very low scoring regions
and their score cannot be improved by shortening them. In
particular, we show how to scan an aignment to collect
information from which a decomposition corresponding
to any particular value of X can be found almost instan-
taneoudly. Unlike the case with computing X-alignments
de novo, the algorithm is both rigorous and efficient. Our
approach isrelated to that of Huang et al. (1994). Thefinal
section of the paper applies the decomposition algorithm
to develop a method for detecting variations in the rate of
genome evolution.

Outline of our approach

A sub-alignment of a given alignment is formed by
deleting zero or more columns from each end of the
alignment. Fix an alignment A, and let N denote the
number of columnsin A. Let A’s columns be given the
respective scores 1, S, .. ., SN- In what follows, the term

1013

Z.Zhang et al.

<X

Cumulated score

'HSP

<2X

Position along the alignment

Fig. 3. Computation of an alignment violating the X-drop condition. Portions on either side of the HSP are X-alignments, and the entire

alignment is a 2X-aignment.

Score

P

Fig. 4. Computation of anon-normal alignment. The HSP has been extended to the right in such away that the entire alignment scores less

than the section from a to b.

alignment will refer only to sub-alignments of A. The
score of an alignment is taken to be the sum of its column
scores. (Our approach also handles cases where a gap of
length k is charged the * affine gap penalty’ x +ky for fixed
x and y.)

An alignment isnormal if each of its prefixes or suffixes
(i.e.initial or terminal runs of columns) has anon-negative
score. This is equivalent to requiring that the alignment
scores at least as high as any of its sub-alignments. A
maximal normal alignment, i.e. onethat isnot containedin
any longer normal alignment, is called full. An alignment
is X-normal for X > 0 if it is normal and each of it
sub-alignments scores at least —X. A maximal X-normal
alignment is called X-full.

A O-full alignment is simply a maximal run of columns
of A with non-negative scores. For every X, X-full
alignments are pairwise digoint, and if X < Y, then
each X-full alignment is contained in a Y-full alignment.

A column that does not belong to any X-full alignment
belongs to amaximal run of columns with negative scores,
hence X-full aignments are separated by such runs.
Finally, the co-full alignments are just the full alignments.

These properties, which arerigorously stated and proved
below, permit assembly of a tree data structure that
encodes the X-full alignments for all X > 0. Leaves of
this tree are the O-full alignments and the maximal runs
of negative scoring columns that separate them; thus their
scores aternate between negative and non-negative. We
also add two special leaves at the beginning and the end of
this sequence, both with score —oco. Each internal nodeisa
disjoint union of itsthree children. Besides the children of
a node, we know the alignment’s score and the minimum
score of its sub-alignments. If the score is positive, and
the minimum sub-alignment score is — X, then this node
congtitutes an X-normal alignment. Figure 5 gives an
example.

1014

Post-processing long pairwise alignments

f\\\

AC

> >

o>

Fig. 5. Treeencoding al X-full alignments. Shaded and unshaded |eaves are maximal runs of columns with negative and non-negative scores,
respectively. Each node is marked with its score, internal nodes also have the largest drop value. Nodes that do not encode X-full alignments

are shaded.

We will show how to construct such a tree in O(N)
time. Given the tree and a particular value of X, the X-full
alignments can be found by inspection of the appropriate
upper part of the tree; if there are k such alignments, we
will inspect at most 3k + 1 nodes.

Theoretical basisof our algorithm

As a preliminary step, we decompose the original align-
ment, A, into a sequence of atomic sub-alignments
A1, Az, ..., Apn_1. If i isodd, A is amaximal run of
columns with non-negative scores, and if i is even, A
is a maximal run of columns with negative scores. Let
oi be the score of Aj. Any full aignment has the form
AiAiy1...Aj, so from now on we work exclusively
with such runs of indices, and the result of our algo-
rithm depends only on the vector (o1, ...,097-1). TO
make some of our definitions simpler, we aso define
00 = 02n = —OQ.
We will be using the following definitions

e [a,b)=

{fa,a+1,...,b— 1} iscalled asegment;

e [i,j) and [k,1) are consistent if [i, j) N [k]) €
{i,), [k, 1), 2};

e aset of segments is consistent if every two elements
are;

e asegment t is consistent with aset Sif {t} U Siis
consistent;

e o(i,j)isthescoreof [i, j) and equals Zﬂ;;ak,

o o,) =minfok,D:i<k<l<jh

e [i,j) isanoma riseif (1) o(i,j) > 0 and (2)
i <k< jimpliesbotho(i,k) >0ando(k, j) > 0;

e [i,j) isanorma drop if (1) o(i,j) < 0 and (2)
i <k < jimpliesbotho(i,k) <Oando(k, j) <O0;

e [i, j)is X-normdl if itisanormal rise and o,(i, j) >
_X,

o [i,i)is X-full if itis X-normal and has no X-normal
superset other than itself;

o x isthe set of segmentsthat are X-full for any X.
LEMMA 1. x isconsistent.

PrROOF. Note first that every inconsistent pair of seg-
ments has the form [a, ¢) and [b, d) wherea < b < ¢ <
d. Suppose that x contains such a pair, i.e. that [a, ¢) is
X-full and [b, d) is Y-full. Assumethat X > Y (the other
case is symmetric). We will show that [a, d) is X-normal,
which isacontradiction, because [a, ¢) cannot be a subset
of another X-normal segment.

First wewill show that [a, d) isanormal rise. To see (1),
observethat o(a,d) = o(a,c) + o(c,d) > o(a, ¢) (the
inequality follows from thefact that b < ¢ < d and [b, d)
is a normal rise). To see (2), suppose that a < k < d.
If k < ¢, 0(a, k) > 0 because [a, c) is a normal riseg
otherwiseo (a, k) = o (a, b) + o(b, k) > o (b, k) > 0. By
asymmetric argument, o (K, d) is non-negative as well.

Now it sufficesto show that a < k < | < d implies
ok, 1) > =X. If Kk = borl < c, thisis true because
both [a, ¢) and [b, d) are X-normal. Otherwise o (k,) =
ok,c)+o(cl)>0o(c|) > —X.[O

1015

Z.Zhang et al.

LEMMA 2. Anormal drop is consistent with x.

PROOF. Suppose that [a, b) is a hormal drop, [c, d) is
X-full and the segments [a, b) and [c, d) are inconsistent.
We have two symmetric cases. If a < ¢ < b < d, then
o(c, b) < Obecause[a, b) isanormal drop, and o (c, b) >
0 because [c, d) isanormal rise, acontradiction.[]

Our goal isto compute . If werepresenteach [i, j) € x
as anode, and let the minimal segment in x that properly
contains[i, i) beitsparent, we have aforest, which we call
the x -forest. Below we describe a somewhat different tree
structure that may be easier to build. Lemma 3 shows that
the x-forest is easy to construct from any reasonable tree
representation of x, including the ternary representation
depicted in Figure 5.

LEMMA 3. For thetree T, suppose that each node is a
segment, that children of each internal node consist of two
or more disjoint sub-segments of the node’s segment, and
that every segment of x is a node of T. If for each node
[i, j), we can decide in O(1) time if it is a normal rise
and determine o.(i, j), then in O(n) time we can build
the x-forest. Moreover, for a given X, if there are m X-
full segments, they can belisted in O(m) time.

PROOF. To compute the x-forest, we call purify
(R, 00), where Ristheroot of T and purify is as follows.
(The pseudo-code deliberately identifies a node with the
corresponding segment, so that e.g. o (U) makes sense.)

boolean purify (u, X)
b < (uisnot anormal rise) or o, (u) < —X
ifbthenY < XdseY « —o,(U)
for every v on thelist of children of u do
if purify (v, Y) then
replace v on the list with thelist of its
children
return b

The arguments of purify areanodeu of T and apositive
real number that providesthe lowest value of X such that u
has an X-full proper ancestor. Given this information, we
can easily decide if u is Y-full for some Y and compute
the proper second argument for the children of u (see the
computation of b and Y). The goal of purify isto remove
from T al descendants of the first argument that do not
belong to x; this argument is not removed, but purify
returns true if it should be. It is easy to see that if each
recursive call made by purify (u, X) achieves this god,
then so does their parent call. This compl etes the sketch of
the proof of correctness of purify.

To see that this function terminates in time O(|x]),
we make three observations. First, purify works in time
O(T]), where |T| denotes the number of nodes in T.

Second, under our assumptions, segment [2k — 1, 2k) is
O-full for k = 1, ..., n. Finally, because every node of T
has at |east two children, and T has at most 2n + 1 leaves,
IT|<4n+ L

To list the X-full segments, we can use a modified
version of purify. The desired running time can be
achieved because, with the exception of leaves with
negative scores, every node of T is an ancestor or
descendant of an X-full segment. Because we can avoid
calling the modified purify for the proper descendants, the
overal number of cals is proportional to the size of the
output.[]

Our method is to compute x by constructing a useful
tree, which isdefined asatree 7 possessing the following
properties.

e Eachnodeof 7 isasegment consistent with .
e Eachleaf of 7 isof theform[i,i + 1).

e Each interna node [a, d) has exactly three children,
[a, b), [b, c) and [c, d), and the signs of their scores
aternate.

Figure 5 gives an example of a useful tree.

LEMMA 4. If 7 is a useful tree with root [0, 2n + 1),
then every segment of x isanodeof 7.

PROOF. Let [i, j) be a segment from X. Consider a
node of 7, say [a, d), that contains [i, i) but none of its
children does (observe that the root of 7 surely contains
[,). If[i,) = [a,d), wearedone. If [a,d) isaledf,
it had to be the case, because this segment is atomic.
Therefore we can assume that [i, j) # [a,d) and that
[a, d) hasthree children, [a, b), [b, ¢) and [c, d). Because
the children are consistent with [i, i) and do not contain it,
each is either digoint with [i, i) or a subset. In particular,
it must be the case that [i, j) = [a,c) or [i,i) = [b, d).
However, this leads to a contradiction. For example, if
[i, j) = [a, c), the contradiction comes from the fact that
[a, ¢) isalegedly a normal rise, but either [a, b) or [b, c)
has a negative score (recall that the signs of scores of
children aternate).[]

Our method of constructing a useful tree with root
[0, 2n + 1) is to start from the sequence (ordered forest)
of 2n + 1 useful trees, each consisting of a single node:
[0,1),[1,2),...,[2n,2n + 1). Then as long as there is
more than one tree in the sequence, some three consecutive
trees, say withroots[a, b), [b, ¢), [c, d), will be merged by
creating a common parent for these roots, namely [a, d).
Clearly, at every stage of this process, the sequence of the
roots will partition the final root segment, [0, 2n + 1).

To assure that we can find the desired three consecutive
trees, we will show that the sequence has the following
invariant properties:

1016

Post-processing long pairwise alignments

P1: the roots in the sequence alternate between normal
drops and normal rises;

P2: if [a, b), [b, ©), [c, d) are roots of three consecutive
trees, and o (b, ¢) > 0, then o (b, ¢) > o (a, b) and
ox(b,¢) > o(c, d).

Thefollowing three lemmas prove the correctness of our
approach.

LEMMA 5. Assume that three consecutive roots in our
sequence, [a, b), [b, ¢), and [c, d), satisfy 0 < o (b, ¢) <
min(—o (a, b), —o(c, d)). Then merging these trees into
a single tree with root [a, d) creates a useful tree and the
resulting sequence still satisfies P1 and P2.

PROOF. First we can show that [a, d) isanormal drop.
Assumea < e < d.Ife < b,theno(a,e) < 0, because
[a,e) isaprefix of [a,b);ifb < e < c,theno(a, e =
oc(@b)+o,c)o(ec) <o(a,b)+o(b,c) <O;finaly,
ifc < e theno(a,e) = o(@b) + (b,c) +o0(c,e) <
o@b) + o(b,c) < 0. A symmetric reasoning shows
that o(e,d) < 0. Because [a, d) is anorma drop, it is
consistent with x by Lemma 2. By P1, the signs of the
scores of its three children alternate, thus the new tree
is useful. Property Pl is preserved, because the new root
segment has a negative score. P2 is preserved, because
og(a,d) < o(ab) ando(a,d) < o(c, d), thus the low
scores in the roots of the neighboring trees, which, by P2,
cannot be smaller than o (a, b) and o (c, d) respectively,
arelarger thano (a, d).[J

If a, b, c and d satisfy the premises of Lemma5, we say
that (a, d) is apossible negative merger.

LEMMA 6. Assume that five consecutive roots in our
sequence, [a, b), [b, ¢), [c, d), [d, e) and [e, f) satisfy

e 0>o0(c,d) > max(o(a,b),o(e f)).

e neither (a,d) nor (c, f) is a possible negative
merger.

Then merging the trees with roots [b, ¢), [c, d), [d, e)
into a single tree with root [b, €) creates a useful tree and
the resulting sequence still satisfies P1 and P2.

ProoOF. Notethat 0 < o (b, ¢) and that min(—o (a, b),
—o(c,d)) = —o(c,d). Because (a, d) is not a possible
negative merger, thisimpliesthat o (b, ¢) > —ao (c, d). For
similar reasons, wehaveo (d, €) > —o(c, d). Onecan see
that [b, €) isanormal rise and o, (b, €) = o(c, d); thus
the new sequence satisfies both P1 and P2. It remains to
show that [b,) is consistent with x. Suppose not. Then
there exists an X-full segment [g, h) that is inconsistent
with [b, €). But it must be consistent with the existing
root segments, and it cannot end or start with a normal

drop, hence [g, h) ends with [b, ¢) or starts with [d, €).
In the first case it must also contain [a, c), and thus
X > —o(a,b) > —o(c,d). It is easy to see that in
this case [g, h) is not X-full because it can be extended
rightwards to e. The case when [g, h) starts with [d, e) is
symmetric..]

If a, b, c,d, eand f satisfy the premises of Lemma 6,
we say that (a, f) isapossible positive merger.

Implementation

Our agorithm is straightforward. We maintain a se-
guence of trees with roots [0 = ag, a1), [a1, &), ...,
[a2m, @2m+1 = 2n+1). While there is more than one
tree in the sequence, we search for the least k such that
either (agk—2, ax+1) IS a possible negative merger, or
(agk—4a, a2k+1) is a possible positive merger, and execute
the respective merger (negative or positive).

The previous three lemmas guarantee that if our algo-
rithm properly terminates, then it will build a useful tree
with root [0, 2n + 1) which contains every segment of x.
Thusto prove its correctness, it suffices to show that every
search for a possible negative/positive merger is success-
ful.

LEMMA 7. Assume that we have a sequence of trees
with roots [ag, a1), [a1, @2), [a2m, @m+1) that satisfies
conditions P1 and P2. Then there existsi such that either
(aj_3, a_2) isa possible negative merger, or (g _s, aj) IS
a possible positive merger.

PROOF. Suppose there is no possible negative merger.
Choose i so that |o(aj_3,ai_2)| is minimal. We can
require that i is odd, otherwise we will have 0 <
0(8-3,8-2) < MIN(—o(&-4,a-3), —0(q-2,3-1))
which means that (aj_4,a 1) iS a possible negative
merger. Thus, 0 > o (83,8 -2) > Max(c (s, & _4),
o(@_1,d)), and in the absence of any possible negative
merger, this implies that (a_s, @) is a possible positive
merger.[]

Now we need to show that we can search for possible
mergers efficiently. Suppose that in our sequence the
segment (gj—1, &) is the result of the last merger. Let
(ak, &) be the next merger, i.e. a possible negative merger
or possible positive merger with the least possible value
of g. Itisclear that | > i; otherwise we would perform
the merger indicated by (ax, @) before the merger that
created (a1, &), not after. We may conclude that in the
sequence of possible negative merger and possible positive
mergers executed by our algorithm the upper index is non-
decreasing; therefore we can search for possible mergers
by checking two possibilities that have the current upper
index, and if neither of them applies, incrementing the

1017

Z.Zhang et al.

1 Push the first leaf on the stack.

2 while the stack size exceeds 1 or there is an unvisited leaf do

3 if the top three stack items indicate a negative merger then

4. pop three items, merge them and push the result onto the stack
5. else if the top five segments indicate a positive merger then

6 pop an item [e,), perform line 4, and push [e, f) back

7 else
8 push the next two leaves onto the stack

Fig. 6. Algorithm to build a useful tree.

upper index and trying again. Because the upper index is
always odd, we will consider only n different values, from
3to2n+ 1.

The above ideas can be readily implemented using
a stack to hold segments. We start with the sequence
[0,1),...,[2m,2m + 1), and we treat it as the input
of a PDA (pushdown automaton). Initially, [0, 1) is on
the stack, with the remaining segments waiting to be
processed. If the top three segments of the stack are some
[a, b), [b, ©), [c, d) such that (a, d) is a possible negative
merger, we merge their trees into one with root [a, d); a
negative merger that decreases the stack height by 2. If
thetop five segmentsaresome[a, b), ..., [e, f) suchthat
(a, f) isapossible positive merger, we perform a positive
merger that produces segment [b, €). If neither possibility
holds, we push the next two (leaf) segments on the stack,
thus incrementing the upper index for the next merger.

The algorithm is summarized in Figure 6. The pseudo-
code omits details about propagation of the information
required for application of Lemma 3, i.e. which nodes
correspond to a norma rise, and the vaues o (u) and
o, (U). A leaf isanormal riseif its scoreis positive, and an
internal node is anormal rise if it is created by a positive
merger. The score of an internal node is the sum of its
children’s scores. Finaly, if u is created by a negative
merger, then o, (U) = o(u), whereas if it is created by
a positive merger of nodes x, y and z, then o, (u) = o (y).
It follows readily that the algorithm spends O (1) time per
node of the useful tree, and hence O(n) time overal.

An application

It has been known for some time that different regions
of amammalian genome evolve at different rates, though
study of the phenomenon has been hampered by lack of
data. Recently, with release of large amounts of human and
mouse genomic DNA sequence data, systematic studies
of relative mutation rates have become possible. However,
there are pitfalls to be overcome to produce an objective
and reliable method to measure the ‘ background’ mutation
rate in a given genomic region, particularly when the
bulk of the detectable sequence similarity is confined to
protein-coding regions. The methods developed in this

paper can be profitably applied in such astudy, as sketched
in this section.

To compare the rates of evolution in different genomic
regionswhere datais available from humans and mice, one
approach is to align each pair of homologous regions and
determine, say, the percentage of nucleotides that align
according to some objective criterion. One subtlety is that
interspersed repeats that inserted after the evolutionary
divergence of humans and mice (such as Alu elementsin
humans and B1 elementsin mice) should be removed from
consideration, so as to distinguish the rate of nucleotide
mutations from the rate of large-scale insertions. Another
consideration is that functionally constrained intervals,
in particular exons (protein-coding regions), should be
excluded so asto expose the neutral rate of evolution.

Perhaps the simplest approach would be to align the
regions in the usual way, but then tally statistics only at
sequence positions not in exons. This is pitfall number
1; with most methods of computing local alignments,
doing so would produce very biased results, since regions
immediately adjacent to an exon will be aigned if
their score is at least O (i.e. the alignment between the
homol ogous exons will be extended to include the region),
whereas an alignment that is far from any exon will be
reported only if its score exceeds some positive threshold.
A somewhat better approach is to remove the exons
before producing the alignment. However, this is pitfall
number 2; in regions that are very weakly conserved
between the two species, this strategy may fail because
the alignment program is unable to differentiate the
biologically meaningful alignments from the ones that
occur by chance; aligned exons are needed to pin down
the remainder of the correct alignment. (Between humans
and mice, homol ogous exons almost always align strongly.
See Makalowski et al., 1996.)

The results presented in this paper permit measurement
of mutation rates in a manner that avoids both pitfalls.
Simply put, the idea is to first align the sequences using
the exons as guideposts, then re-score the alignment where
positions within exons are ‘masked’ so that they cannot
be aigned to another nucleotide. That is, the X-full sub-
alignments are reported, for some appropriate value of
X. In that manner, nucleotides aligned in the first step
and adjacent to an exon will be treated as candidates for
alignment in the second phase, but will not be reported as
aligning unless they meet the same criterion that is applied
far from the gene.

Figure 7 illustrates this approach using the genes
ERCC2 (Lamerdin et al., 1996) and XRCC1 (Lamerdin
et al., 1995). A portion of each human-mouse alignment
containing several exons is shown, with weak matches
in the exons' flanks. These initial alignments were com-
puted using a Smith-Waterman criterion, where each
alignment’s score was required to exceed some threshold,

1018

Post-processing long pairwise alignments

_ ERCC2.
67 89 1T

ERCC2
67 89 1

1
22k 24k 22k 24k

XRCCI XRCCI
5 7 5 7
I |1 | TS
o T 7%
S - 50%
25k 27k 25k 27k

Fig. 7. Determination of regions that align, ignoring exons. For each of the ERCC2 and XRCC1 genes, a percent identity plot of a portion of
the alignment is shown on the |eft, and the alignments that remain after filtering out the exons, as described in the paper, are shown on the

right.

7. Then, the score of each column in a protein-coding
region was set to —oo, and X-full sub-alignments of score
exceeding T were computed as described in this paper,
where X was in essence set to oo, corresponding to the
fact that no X-drop condition was placed on the origina
alignments.

With XRCC1 but not ERCC2, some of the non-exon
aligning regions remain, indicating that the rate of neutral
mutation in the ERCC2 region may be substantially higher
than around XRCC1. Note that this conclusion differs
from what would be suggested by simply removing the
coding-region matches from the first and third panel of
Figure 7 (pitfall number 1), since that operation would
leave similar-looking residues of tiny matches for both
ERCC2 and XRCCL1. Also, the approach of removing
exons before aligning the sequences would fail (pitfall
number 2), because the matches around XRCC1 that are
pictured in the right-most panel of Figure 7 are too weak to
be reliably determined within long surrounding sequences
unless the matches between homologous exons are used to
guide the process.

Acknowledgements

Z.Z. and W.M. were supported by grant LM05110 from
the National Library of Medicine. PB was supported
by NSF grant CCR 9700053. We thank Josep Abril for
producing Figure 2. The referees provided an unusually
insightful report.

References

Altschul,S.F., Gish,W., Miller,W., Myers,B. and Lipman,D.J. (1990)
A basic local alignment search tool. J. Mol. Bial., 215, 403-410.
Altschul, SF, Madden,T.L., Schéffer,A., Zhang,J., ZhangZ.,
Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-

BLAST — a new generation of protein database search pro-
grams. Nucleic Acids Res., 25, 3389-3402.

Chao,K.-M., Zhang,J., Ostell,J. and Miller,W. (1995) A local
alignment tool for very long DNA sequences. Comput. Applic.
Biosci., 11, 147-153.

Huang,X., Hardison,R.C. and Miller,W. (1990) A space-efficient
algorithm for local similarities. Comput. Applic. Biosci., 6, 373—
381.

Huang,X., Pevzner,P. and Miller,W. (1994) Parametric recomputing
in alignment graphs. Combinatorial Pattern Matching. Springer
L ecture Notes in Computer Science, 807, 87-101.

Lamerdin JE., Montgomery,M.A., Stilwagen,S.A., Schei-
decker,L K., TebbsR.S, Brookman,K.W., Thompson,L.H.
and Carrano,A.V. (1995) Genomic sequence comparison of the
human and mouse XRCC1 DNA repair gene regions. Genomics,
25, 547-554.

Lamerdin,J.E., Stilwagen,S.A., Ramirez,M.H., Stubbs,L. and Car-
rano,A.V. (1996) Sequence analysis of the ERCC2 gene regions
of human, mouse and hamster reveals three linked genes. Ge-
nomics, 34, 399-409.

Makalowski,W., Zhang,J. and Boguski,M.S. (1996) Comparative
analysis of 1196 orthologous mouse and human full-length
MRNA and protein sequences. Genome Res., 6, 846-857.

Needleman,S.B. and Wunsch,C.D. (1970) A general method appli-
cable to the search for similarities in the amino acid sequences
of two proteins. J. Mol. Bial., 48, 443-453.

Sellers,PH. (1984) Pattern recognition in genetic sequences by
mismatch density. Bull. Math. Biol., 46, 501-514.

Smith, T.F. and Waterman,M.S. (1981) ldentification of common
molecular sequences. J. Mol. Bial., 97, 723-728.

Vingron,M. and Waterman,M.S. (1994) Sequence alignment and
penalty choice. J. Mal. Bial., 235, 1-12.

Zhang,Z., Schéffer,A., Miller,W., Madden,T.L., Lipman,D.J,
Koonin,E.V. and Altschul ,S.F. (1998a) Protein sequence simi-
larity searches using patterns as seeds. Nucleic Acids Res., 26,
3986-3990.

Zhang,Z., Berman,P. and Miller,W. (1998b) Alignments without
low-scoring regions. J. Computational Biol., 5, 197-210.

1019

