
BIOINFORMATICS Vol. 15 no. 12 1999
Pages 1012–1019

Post-processing long pairwise alignments

Zheng Zhang 1, Piotr Berman 1, Thomas Wiehe 2,3 and Webb
Miller 1,∗

1Department of Computer Science and Engineering, The Pennsylvania State
University, University Park, PA 16802, USA and 2IMB Jena, Department of Genome
Analysis, P.O. Box 100 813, D-07708 Jena, Germany

Received on February 12, 1999; revised on May 20, 1999; accepted on June 4, 1999

Abstract
Motivation: The local alignment problem for two se-
quences requires determining similar regions, one from
each sequence, and aligning those regions. For alignments
computed by dynamic programming, current approaches
for selecting similar regions may have potential flaws. For
instance, the criterion of Smith and Waterman can lead to
inclusion of an arbitrarily poor internal segment. Other
approaches can generate an alignment scoring less than
some of its internal segments.
Results: We develop an algorithm that decomposes a long
alignment into sub-alignments that avoid these potential
imperfections. Our algorithm runs in time proportional to
the original alignment’s length. Practical applications to
alignments of genomic DNA sequences are described.
Availability: Software is available at http://globin.cse.psu.
edu/
Contact: webb@cse.psu.edu

Introduction
Given an alignment scoring scheme, which assigns a
score to each possible combination of aligned sequence
entries and to each gap, a highest scoring alignment of
two given sequences can be computed by a dynamic
programming approach (Needleman and Wunsch, 1970).
It is less obvious how one should determine a ‘best’
alignment that can ignore ends of either sequence (a so-
called ‘local’ alignment), since in effect one must pick a
region of each sequence and then align the chosen regions.
The approach of Smith and Waterman (1981) is to find a
highest scoring alignment of arbitrary regions of the two
sequences, which can be done with a simple modification
of the end-to-end alignment algorithm. When used with an
alignment scoring scheme under which the average score
of a random alignment is negative, the method provides an

∗To whom correspondence should be addressed.
3Current address: Max Planck Institute for Chemical Ecology, Department
of Molecular Genetics and Evolution, Tatzendpromenade 1a, 07745 Jena,
Germany.

approach to solve the local alignment problem.
This approach to local alignment has been quite popular,

in part because it is relatively straightforward to under-
stand precisely what is being computed. Alternative for-
mulations of the local alignment problem, e.g. by Sellers
(1984), have sometimes been more cumbersome. More-
over, the Smith–Waterman results have a number of de-
sirable properties, including that of being ‘normal’, in the
sense that their score cannot be raised by shortening the
alignment at either end. The approach has been adopted
by many sequence alignment programs, including our own
software for genomic DNA sequences (e.g. Huanget al.,
1990; Chaoet al., 1995).

An unfortunate property of the Smith–Waterman notion
of local similarity is that arbitrarily poor regions can be
included in a reported alignment, as illustrated in Figure 1.
This is one manifestation of the sensitivity of the output to
the choice of alignment scoring parameters (Vingron and
Waterman, 1994).

For a practical example of the problem, consider the
use of alignment scores that, in our experience, usually
provide reasonable alignments of orthologous sequences
from humans and mice. However, on occasion, long non-
matching regions in both intergenic and intragenic parts of
the genomic sequences can be included in the alignment,
as shown in Figure 2. Similar problems arise if those
same scores are used when comparing sequences from
e.g. C. elegans and C. briggsae, which have a much
higher density of coding DNA and shorter introns than
do mammals, or when comparing sequences from two

Fig. 1. Inclusion of an arbitrarily poor region in an alignment. If
a region of score−X is sandwiched between two regions scoring
more thanX , the Smith–Waterman approach will join the three
regions into a single alignment, regardless of how largeX is.

1012 c© Oxford University Press 1999

Post-processing long pairwise alignments

Fig. 2. Dotplot summaries of two sets of alignments of human and mouse genomic sequences (GenBank Acc. Nos AF030876, Z47046,
Z47066 and Z68193 for human and AF121351 mouse). In both genomic sequences, repetitive elements were found (RepeatMasker with
default settings; http://ftp.genome.washington.edu/RM/RepeatMasker.html) and removed from the sequences. The sequences contain three
homologous genes. For clarity, only the gene structures for MECP2 and Mecp2, as determined by K. Reichwald et al. (submitted for
publication), are indicated by black (CDS) and dark grey (UTR) boxes and exon numbers. The alignments on the left were computed by
a program called SIM (http://globin.cse.psu.edu) that uses the Smith–Waterman notion of a local alignment. The longest local alignment
(human positions 6817–53 081) joins highly conserved regions together using regions that are not conserved. Note especially the intergenic
region between IRAK and MECP2 and intron 2 of MECP2, which are indicated by the interior grey boxes. The alignments on the right were
determined by post- processing the alignments on the left, using the method described in this paper. Parameter settings were: +1 (match),
−1 (mismatch), −6− 0.2k (penalty for a gap of length k) and X = 100.

mammalian species that diverged more recently than the
mammalian radiation, e.g. human and monkey sequences.

A recent alternative formulation of the local alignment
problem avoids alignments having arbitrarily poor re-
gions. An X-drop within an alignment, where X > 0
is fixed in advance, is a region of consecutive columns
scoring less than −X . The idea, then, is to consider
only alignments that contain no X -drop, which we call
X-alignments.

A number of theoretical results about X -alignments are
proved by Zhang et al. (1998b). For the current discussion,
the relevant observation is that optimal X -alignments are
expensive to compute, so in practice some heuristic (i.e.
approximation algorithm without a rigorous guarantee of
solution quality) is employed. Altschul et al. (1997) and
Zhang et al. (1998a) describe programs for searching
protein sequence databases that use such methods.

These programs typically work by locating a statistically
significant, gap-free local alignment (Altschul et al.,
1990), sometimes called a high scoring segment pair,
abbreviated HSP. The alignment is extended in both
directions, as described by Altschul et al. (1997). The
portions of the alignment on either side of the extension
point are guaranteed to be X -alignments, but the full
alignment can only be guaranteed to be a 2X -alignment

(see Figure 3). Moreover, in cases where X exceeds the
score necessary for statistical significance of an HSP, a
computed alignment might be non-normal, in the sense
that removing columns from one end raises its score (see
Figure 4 for an example of this phenomenon).

This paper develops techniques for decomposing a long
alignment into sub-alignments that avoid both problems,
i.e. the sub-alignments are free of very low scoring regions
and their score cannot be improved by shortening them. In
particular, we show how to scan an alignment to collect
information from which a decomposition corresponding
to any particular value of X can be found almost instan-
taneously. Unlike the case with computing X -alignments
de novo, the algorithm is both rigorous and efficient. Our
approach is related to that of Huang et al. (1994). The final
section of the paper applies the decomposition algorithm
to develop a method for detecting variations in the rate of
genome evolution.

Outline of our approach
A sub-alignment of a given alignment is formed by
deleting zero or more columns from each end of the
alignment. Fix an alignment A, and let N denote the
number of columns in A. Let A’s columns be given the
respective scores s1, s2, . . . , sN . In what follows, the term

1013

Z.Zhang et al.

Fig. 3. Computation of an alignment violating the X -drop condition. Portions on either side of the HSP are X -alignments, and the entire
alignment is a 2X -alignment.

Fig. 4. Computation of a non-normal alignment. The HSP has been extended to the right in such a way that the entire alignment scores less
than the section from a to b.

alignment will refer only to sub-alignments of A. The
score of an alignment is taken to be the sum of its column
scores. (Our approach also handles cases where a gap of
length k is charged the ‘affine gap penalty’ x+ky for fixed
x and y.)

An alignment is normal if each of its prefixes or suffixes
(i.e. initial or terminal runs of columns) has a non-negative
score. This is equivalent to requiring that the alignment
scores at least as high as any of its sub-alignments. A
maximal normal alignment, i.e. one that is not contained in
any longer normal alignment, is called full. An alignment
is X-normal for X ≥ 0 if it is normal and each of it
sub-alignments scores at least −X . A maximal X -normal
alignment is called X-full.

A 0-full alignment is simply a maximal run of columns
of A with non-negative scores. For every X, X -full
alignments are pairwise disjoint, and if X < Y , then
each X -full alignment is contained in a Y -full alignment.

A column that does not belong to any X -full alignment
belongs to a maximal run of columns with negative scores,
hence X -full alignments are separated by such runs.
Finally, the∞-full alignments are just the full alignments.

These properties, which are rigorously stated and proved
below, permit assembly of a tree data structure that
encodes the X -full alignments for all X ≥ 0. Leaves of
this tree are the 0-full alignments and the maximal runs
of negative scoring columns that separate them; thus their
scores alternate between negative and non-negative. We
also add two special leaves at the beginning and the end of
this sequence, both with score−∞. Each internal node is a
disjoint union of its three children. Besides the children of
a node, we know the alignment’s score and the minimum
score of its sub-alignments. If the score is positive, and
the minimum sub-alignment score is −X , then this node
constitutes an X -normal alignment. Figure 5 gives an
example.

1014

Post-processing long pairwise alignments

Fig. 5. Tree encoding all X -full alignments. Shaded and unshaded leaves are maximal runs of columns with negative and non-negative scores,
respectively. Each node is marked with its score, internal nodes also have the largest drop value. Nodes that do not encode X -full alignments
are shaded.

We will show how to construct such a tree in O(N)

time. Given the tree and a particular value of X , the X -full
alignments can be found by inspection of the appropriate
upper part of the tree; if there are k such alignments, we
will inspect at most 3k + 1 nodes.

Theoretical basis of our algorithm
As a preliminary step, we decompose the original align-
ment, A, into a sequence of atomic sub-alignments
A1, A2, . . . , A2n−1. If i is odd, Ai is a maximal run of
columns with non-negative scores, and if i is even, Ai
is a maximal run of columns with negative scores. Let
σi be the score of Ai . Any full alignment has the form
Ai Ai+1 . . . A j , so from now on we work exclusively
with such runs of indices, and the result of our algo-
rithm depends only on the vector (σ1, . . . , σ2n−1). To
make some of our definitions simpler, we also define
σ0 = σ2n = −∞.

We will be using the following definitions

• [a, b) = {a, a + 1, . . . , b − 1} is called a segment;

• [i, j) and [k, 1) are consistent if [i, j) ∩ [k, l) ∈
{[i, j), [k, l),∅};

• a set of segments is consistent if every two elements
are;

• a segment t is consistent with a set S if {t} ∪ S is
consistent;

• σ(i, j) is the score of [i, j) and equals
∑ j−1

k=1 σk ,

• σ∗(i, j) = min{σ(k, l) : i ≤ k ≤ l ≤ j};

• [i, j) is a normal rise if (1) σ(i, j) ≥ 0 and (2)
i < k < j implies both σ(i, k) ≥ 0 and σ(k, j) ≥ 0;

• [i, j) is a normal drop if (1) σ(i, j) < 0 and (2)
i < k < j implies both σ(i, k) < 0 and σ(k, j) < 0;

• [i, j) is X -normal if it is a normal rise and σ∗(i, j) ≥
−X ;

• [i, i) is X -full if it is X -normal and has no X -normal
superset other than itself;

• χ is the set of segments that are X -full for any X .

LEMMA 1. χ is consistent.

PROOF. Note first that every inconsistent pair of seg-
ments has the form [a, c) and [b, d) where a < b < c <

d. Suppose that χ contains such a pair, i.e. that [a, c) is
X -full and [b, d) is Y -full. Assume that X ≥ Y (the other
case is symmetric). We will show that [a, d) is X -normal,
which is a contradiction, because [a, c) cannot be a subset
of another X -normal segment.

First we will show that [a, d) is a normal rise. To see (1),
observe that σ(a, d) = σ(a, c) + σ(c, d) ≥ σ(a, c) (the
inequality follows from the fact that b < c < d and [b, d)

is a normal rise). To see (2), suppose that a < k < d .
If k ≤ c, σ(a, k) ≥ 0 because [a, c) is a normal rise;
otherwise σ(a, k) = σ(a, b)+ σ(b, k) ≥ σ(b, k) ≥ 0. By
a symmetric argument, σ(k, d) is non-negative as well.

Now it suffices to show that a ≤ k < l ≤ d implies
σ(k, l) ≥ −X . If k ≥ b or l ≤ c, this is true because
both [a, c) and [b, d) are X -normal. Otherwise σ(k, l) =
σ(k, c)+ σ(c, l) ≥ σ(c, l) ≥ −X.�

1015

Z.Zhang et al.

LEMMA 2. A normal drop is consistent with χ .

PROOF. Suppose that [a, b) is a normal drop, [c, d) is
X -full and the segments [a, b) and [c, d) are inconsistent.
We have two symmetric cases. If a < c < b < d, then
σ(c, b) < 0 because [a, b) is a normal drop, and σ(c, b) ≥
0 because [c, d) is a normal rise, a contradiction.�

Our goal is to compute χ . If we represent each [i, j) ∈ χ

as a node, and let the minimal segment in χ that properly
contains [i, i) be its parent, we have a forest, which we call
the χ -forest. Below we describe a somewhat different tree
structure that may be easier to build. Lemma 3 shows that
the χ -forest is easy to construct from any reasonable tree
representation of χ , including the ternary representation
depicted in Figure 5.

LEMMA 3. For the tree T , suppose that each node is a
segment, that children of each internal node consist of two
or more disjoint sub-segments of the node’s segment, and
that every segment of χ is a node of T . If for each node
[i, j), we can decide in O(1) time if it is a normal rise
and determine σ∗(i, j), then in O(n) time we can build
the χ -forest. Moreover, for a given X, if there are m X-
full segments, they can be listed in O(m) time.

PROOF. To compute the χ -forest, we call purify
(R,∞), where R is the root of T and purify is as follows.
(The pseudo-code deliberately identifies a node with the
corresponding segment, so that e.g. σ∗(u) makes sense.)

boolean purify (u, X)

b← (u is not a normal rise) or σ∗(u) ≤ −X
if b then Y ← X else Y ←−σ∗(u)

for every ν on the list of children of u do
if purify (v, Y) then

replace ν on the list with the list of its
children

return b

The arguments of purify are a node u of T and a positive
real number that provides the lowest value of X such that u
has an X -full proper ancestor. Given this information, we
can easily decide if u is Y -full for some Y and compute
the proper second argument for the children of u (see the
computation of b and Y). The goal of purify is to remove
from T all descendants of the first argument that do not
belong to χ ; this argument is not removed, but purify
returns true if it should be. It is easy to see that if each
recursive call made by purify (u, X) achieves this goal,
then so does their parent call. This completes the sketch of
the proof of correctness of purify.

To see that this function terminates in time O(|χ |),
we make three observations. First, purify works in time
O(|T |), where |T | denotes the number of nodes in T .

Second, under our assumptions, segment [2k − 1, 2k) is
0-full for k = 1, . . . , n. Finally, because every node of T
has at least two children, and T has at most 2n+ 1 leaves,
|T | ≤ 4n + 1.

To list the X -full segments, we can use a modified
version of purify. The desired running time can be
achieved because, with the exception of leaves with
negative scores, every node of T is an ancestor or
descendant of an X -full segment. Because we can avoid
calling the modified purify for the proper descendants, the
overall number of calls is proportional to the size of the
output.�

Our method is to compute χ by constructing a useful
tree, which is defined as a tree T possessing the following
properties.

• Each node of T is a segment consistent with χ .

• Each leaf of T is of the form [i, i + 1).

• Each internal node [a, d) has exactly three children,
[a, b), [b, c) and [c, d), and the signs of their scores
alternate.

Figure 5 gives an example of a useful tree.

LEMMA 4. If T is a useful tree with root [0, 2n + 1),
then every segment of χ is a node of T .

PROOF. Let [i, j) be a segment from X . Consider a
node of T , say [a, d), that contains [i, i) but none of its
children does (observe that the root of T surely contains
[i, j)). If [i, j) = [a, d), we are done. If [a, d) is a leaf,
it had to be the case, because this segment is atomic.
Therefore we can assume that [i, j) �= [a, d) and that
[a, d) has three children, [a, b), [b, c) and [c, d). Because
the children are consistent with [i, i) and do not contain it,
each is either disjoint with [i, i) or a subset. In particular,
it must be the case that [i, j) = [a, c) or [i, i) = [b, d).
However, this leads to a contradiction. For example, if
[i, j) = [a, c), the contradiction comes from the fact that
[a, c) is allegedly a normal rise, but either [a, b) or [b, c)
has a negative score (recall that the signs of scores of
children alternate).�

Our method of constructing a useful tree with root
[0, 2n + 1) is to start from the sequence (ordered forest)
of 2n + 1 useful trees, each consisting of a single node:
[0, 1), [1, 2), . . . , [2n, 2n + 1). Then as long as there is
more than one tree in the sequence, some three consecutive
trees, say with roots [a, b), [b, c), [c, d), will be merged by
creating a common parent for these roots, namely [a, d).
Clearly, at every stage of this process, the sequence of the
roots will partition the final root segment, [0, 2n + 1).

To assure that we can find the desired three consecutive
trees, we will show that the sequence has the following
invariant properties:

1016

Post-processing long pairwise alignments

P1: the roots in the sequence alternate between normal
drops and normal rises;

P2: if [a, b), [b, c), [c, d) are roots of three consecutive
trees, and σ(b, c) ≥ 0, then σ∗(b, c) ≥ σ(a, b) and
σ∗(b, c) ≥ σ(c, d).

The following three lemmas prove the correctness of our
approach.

LEMMA 5. Assume that three consecutive roots in our
sequence, [a, b), [b, c), and [c, d), satisfy 0 ≤ σ(b, c) <

min(−σ(a, b), −σ(c, d)). Then merging these trees into
a single tree with root [a, d) creates a useful tree and the
resulting sequence still satisfies P1 and P2.

PROOF. First we can show that [a, d) is a normal drop.
Assume a < e < d. If e ≤ b, then σ(a, e) < 0, because
[a, e) is a prefix of [a, b); if b < e ≤ c, then σ(a, e) =
σ(a, b)+σ(b, c)σ (e, c) ≤ σ(a, b)+σ(b, c) < 0; finally,
if c < e, then σ(a, e) = σ(a, b) + (b, c) + σ(c, e) <

σ(a, b) + σ(b, c) < 0. A symmetric reasoning shows
that σ(e, d) < 0. Because [a, d) is a normal drop, it is
consistent with χ by Lemma 2. By P1, the signs of the
scores of its three children alternate, thus the new tree
is useful. Property P1 is preserved, because the new root
segment has a negative score. P2 is preserved, because
σ(a, d) < σ(a, b) and σ(a, d) < σ(c, d), thus the low
scores in the roots of the neighboring trees, which, by P2,
cannot be smaller than σ(a, b) and σ(c, d) respectively,
are larger than σ(a, d).�

If a, b, c and d satisfy the premises of Lemma 5, we say
that (a, d) is a possible negative merger.

LEMMA 6. Assume that five consecutive roots in our
sequence, [a, b), [b, c), [c, d), [d, e) and [e, f) satisfy

• 0 > σ(c, d) ≥ max(σ (a, b), σ (e, f)).

• neither (a, d) nor (c, f) is a possible negative
merger.

Then merging the trees with roots [b, c), [c, d), [d, e)
into a single tree with root [b, e) creates a useful tree and
the resulting sequence still satisfies P1 and P2.

PROOF. Note that 0 ≤ σ(b, c) and that min(−σ(a, b),
−σ(c, d)) = −σ(c, d). Because (a, d) is not a possible
negative merger, this implies that σ(b, c) ≥ −σ(c, d). For
similar reasons, we have σ(d, e) ≥ −σ(c, d). One can see
that [b, e) is a normal rise and σ∗(b, e) = σ(c, d); thus
the new sequence satisfies both P1 and P2. It remains to
show that [b, e) is consistent with χ . Suppose not. Then
there exists an X -full segment [g, h) that is inconsistent
with [b, e). But it must be consistent with the existing
root segments, and it cannot end or start with a normal

drop, hence [g, h) ends with [b, c) or starts with [d, e).
In the first case it must also contain [a, c), and thus
X ≥ −σ(a, b) ≥ −σ(c, d). It is easy to see that in
this case [g, h) is not X -full because it can be extended
rightwards to e. The case when [g, h) starts with [d, e) is
symmetric.�

If a, b, c, d, e and f satisfy the premises of Lemma 6,
we say that (a, f) is a possible positive merger.

Implementation
Our algorithm is straightforward. We maintain a se-
quence of trees with roots [0 = a0, a1), [a1, a2), . . .,
[a2m, a2m+1 = 2n+1). While there is more than one
tree in the sequence, we search for the least k such that
either (a2k−2, a2k+1) is a possible negative merger, or
(a2k−4, a2k+1) is a possible positive merger, and execute
the respective merger (negative or positive).

The previous three lemmas guarantee that if our algo-
rithm properly terminates, then it will build a useful tree
with root [0, 2n + 1) which contains every segment of χ .
Thus to prove its correctness, it suffices to show that every
search for a possible negative/positive merger is success-
ful.

LEMMA 7. Assume that we have a sequence of trees
with roots [a0, a1), [a1, a2), [a2m, a2m+1) that satisfies
conditions P1 and P2. Then there exists i such that either
(ai−3, ai−2) is a possible negative merger, or (ai−5, ai) is
a possible positive merger.

PROOF. Suppose there is no possible negative merger.
Choose i so that |σ(ai−3, ai−2)| is minimal. We can
require that i is odd, otherwise we will have 0 <

σ(ai−3, ai−2) < min(−σ(ai−4, ai−3),−σ(ai−2, ai−1))

which means that (ai−4, ai−1) is a possible negative
merger. Thus, 0 > σ(ai−3, ai−2) ≥ max(σ (ai−5, ai−4),
σ(ai−1, ai)), and in the absence of any possible negative
merger, this implies that (ai−5, ai) is a possible positive
merger.�

Now we need to show that we can search for possible
mergers efficiently. Suppose that in our sequence the
segment (ai−1, ai) is the result of the last merger. Let
(ak, al) be the next merger, i.e. a possible negative merger
or possible positive merger with the least possible value
of al . It is clear that l ≥ i ; otherwise we would perform
the merger indicated by (ak, al) before the merger that
created (ai−1, ai), not after. We may conclude that in the
sequence of possible negative merger and possible positive
mergers executed by our algorithm the upper index is non-
decreasing; therefore we can search for possible mergers
by checking two possibilities that have the current upper
index, and if neither of them applies, incrementing the

1017

Z.Zhang et al.

Fig. 6. Algorithm to build a useful tree.

upper index and trying again. Because the upper index is
always odd, we will consider only n different values, from
3 to 2n + 1.

The above ideas can be readily implemented using
a stack to hold segments. We start with the sequence
[0, 1), . . . , [2m, 2m + 1), and we treat it as the input
of a PDA (pushdown automaton). Initially, [0, 1) is on
the stack, with the remaining segments waiting to be
processed. If the top three segments of the stack are some
[a, b), [b, c), [c, d) such that (a, d) is a possible negative
merger, we merge their trees into one with root [a, d); a
negative merger that decreases the stack height by 2. If
the top five segments are some [a, b), . . . , [e, f) such that
(a, f) is a possible positive merger, we perform a positive
merger that produces segment [b, e). If neither possibility
holds, we push the next two (leaf) segments on the stack,
thus incrementing the upper index for the next merger.

The algorithm is summarized in Figure 6. The pseudo-
code omits details about propagation of the information
required for application of Lemma 3, i.e. which nodes
correspond to a normal rise, and the values σ(u) and
σ∗(u). A leaf is a normal rise if its score is positive, and an
internal node is a normal rise if it is created by a positive
merger. The score of an internal node is the sum of its
children’s scores. Finally, if u is created by a negative
merger, then σ∗(u) = σ(u), whereas if it is created by
a positive merger of nodes x , y and z, then σ∗(u) = σ(y).
It follows readily that the algorithm spends O(1) time per
node of the useful tree, and hence O(n) time overall.

An application
It has been known for some time that different regions
of a mammalian genome evolve at different rates, though
study of the phenomenon has been hampered by lack of
data. Recently, with release of large amounts of human and
mouse genomic DNA sequence data, systematic studies
of relative mutation rates have become possible. However,
there are pitfalls to be overcome to produce an objective
and reliable method to measure the ‘background’ mutation
rate in a given genomic region, particularly when the
bulk of the detectable sequence similarity is confined to
protein-coding regions. The methods developed in this

paper can be profitably applied in such a study, as sketched
in this section.

To compare the rates of evolution in different genomic
regions where data is available from humans and mice, one
approach is to align each pair of homologous regions and
determine, say, the percentage of nucleotides that align
according to some objective criterion. One subtlety is that
interspersed repeats that inserted after the evolutionary
divergence of humans and mice (such as Alu elements in
humans and B1 elements in mice) should be removed from
consideration, so as to distinguish the rate of nucleotide
mutations from the rate of large-scale insertions. Another
consideration is that functionally constrained intervals,
in particular exons (protein-coding regions), should be
excluded so as to expose the neutral rate of evolution.

Perhaps the simplest approach would be to align the
regions in the usual way, but then tally statistics only at
sequence positions not in exons. This is pitfall number
1; with most methods of computing local alignments,
doing so would produce very biased results, since regions
immediately adjacent to an exon will be aligned if
their score is at least 0 (i.e. the alignment between the
homologous exons will be extended to include the region),
whereas an alignment that is far from any exon will be
reported only if its score exceeds some positive threshold.
A somewhat better approach is to remove the exons
before producing the alignment. However, this is pitfall
number 2; in regions that are very weakly conserved
between the two species, this strategy may fail because
the alignment program is unable to differentiate the
biologically meaningful alignments from the ones that
occur by chance; aligned exons are needed to pin down
the remainder of the correct alignment. (Between humans
and mice, homologous exons almost always align strongly.
See Makalowski et al., 1996.)

The results presented in this paper permit measurement
of mutation rates in a manner that avoids both pitfalls.
Simply put, the idea is to first align the sequences using
the exons as guideposts, then re-score the alignment where
positions within exons are ‘masked’ so that they cannot
be aligned to another nucleotide. That is, the X -full sub-
alignments are reported, for some appropriate value of
X . In that manner, nucleotides aligned in the first step
and adjacent to an exon will be treated as candidates for
alignment in the second phase, but will not be reported as
aligning unless they meet the same criterion that is applied
far from the gene.

Figure 7 illustrates this approach using the genes
ERCC2 (Lamerdin et al., 1996) and XRCC1 (Lamerdin
et al., 1995). A portion of each human-mouse alignment
containing several exons is shown, with weak matches
in the exons’ fl anks. These initial alignments were com-
puted using a Smith–Waterman criterion, where each
alignment’s score was required to exceed some threshold,

1018

Post-processing long pairwise alignments

Fig. 7. Determination of regions that align, ignoring exons. For each of the ERCC2 and XRCC1 genes, a percent identity plot of a portion of
the alignment is shown on the left, and the alignments that remain after filtering out the exons, as described in the paper, are shown on the
right.

τ . Then, the score of each column in a protein-coding
region was set to −∞, and X -full sub-alignments of score
exceeding τ were computed as described in this paper,
where X was in essence set to ∞, corresponding to the
fact that no X -drop condition was placed on the original
alignments.

With XRCC1 but not ERCC2, some of the non-exon
aligning regions remain, indicating that the rate of neutral
mutation in the ERCC2 region may be substantially higher
than around XRCC1. Note that this conclusion differs
from what would be suggested by simply removing the
coding-region matches from the first and third panel of
Figure 7 (pitfall number 1), since that operation would
leave similar-looking residues of tiny matches for both
ERCC2 and XRCC1. Also, the approach of removing
exons before aligning the sequences would fail (pitfall
number 2), because the matches around XRCC1 that are
pictured in the right-most panel of Figure 7 are too weak to
be reliably determined within long surrounding sequences
unless the matches between homologous exons are used to
guide the process.

Acknowledgements
Z.Z. and W.M. were supported by grant LM05110 from
the National Library of Medicine. P.B was supported
by NSF grant CCR 9700053. We thank Josep Abril for
producing Figure 2. The referees provided an unusually
insightful report.

References
Altschul,S.F., Gish,W., Miller,W., Myers,B. and Lipman,D.J. (1990)

A basic local alignment search tool. J. Mol. Biol., 215, 403–410.
Altschul,S.F., Madden,T.L., Schäffer,A., Zhang,J., Zhang,Z.,

Miller,W. and Lipman,D.J. (1997) Gapped BLAST and PSI-

BLAST — a new generation of protein database search pro-
grams. Nucleic Acids Res., 25, 3389–3402.

Chao,K.-M., Zhang,J., Ostell,J. and Miller,W. (1995) A local
alignment tool for very long DNA sequences. Comput. Applic.
Biosci., 11, 147–153.

Huang,X., Hardison,R.C. and Miller,W. (1990) A space-efficient
algorithm for local similarities. Comput. Applic. Biosci., 6, 373–
381.

Huang,X., Pevzner,P. and Miller,W. (1994) Parametric recomputing
in alignment graphs. Combinatorial Pattern Matching. Springer
Lecture Notes in Computer Science, 807, 87–101.

Lamerdin,J.E., Montgomery,M.A., Stilwagen,S.A., Schei-
decker,L.K., Tebbs,R.S., Brookman,K.W., Thompson,L.H.
and Carrano,A.V. (1995) Genomic sequence comparison of the
human and mouse XRCC1 DNA repair gene regions. Genomics,
25, 547–554.

Lamerdin,J.E., Stilwagen,S.A., Ramirez,M.H., Stubbs,L. and Car-
rano,A.V. (1996) Sequence analysis of the ERCC2 gene regions
of human, mouse and hamster reveals three linked genes. Ge-
nomics, 34, 399–409.

Makalowski,W., Zhang,J. and Boguski,M.S. (1996) Comparative
analysis of 1196 orthologous mouse and human full-length
mRNA and protein sequences. Genome Res., 6, 846–857.

Needleman,S.B. and Wunsch,C.D. (1970) A general method appli-
cable to the search for similarities in the amino acid sequences
of two proteins. J. Mol. Biol., 48, 443–453.

Sellers,P.H. (1984) Pattern recognition in genetic sequences by
mismatch density. Bull. Math. Biol., 46, 501–514.

Smith,T.F. and Waterman,M.S. (1981) Identification of common
molecular sequences. J. Mol. Biol., 97, 723–728.

Vingron,M. and Waterman,M.S. (1994) Sequence alignment and
penalty choice. J. Mol. Biol., 235, 1–12.

Zhang,Z., Schäffer,A., Miller,W., Madden,T.L., Lipman,D.J.,
Koonin,E.V. and Altschul,S.F. (1998a) Protein sequence simi-
larity searches using patterns as seeds. Nucleic Acids Res., 26,
3986–3990.

Zhang,Z., Berman,P. and Miller,W. (1998b) Alignments without
low-scoring regions. J. Computational Biol., 5, 197–210.

1019

